×

Hausdorff dimension of the graph of the fractional Brownian sheet. (English) Zbl 1057.60033

Let \(\{B^{(\alpha)}(t)\}_{t\in R^d}\) be the fractional Brownian sheet with multi-index \(\alpha=(\alpha_1,\dots,\alpha_d)\), \(0<\alpha_i<1\). Kamont has shown that, with probability \(1\), the box dimension of the graph of a trajectory of this Gaussian field, over a non-degenerate cube \(Q\subset R^d\), is equal to \(d+1-\min(\alpha_1,\dots,\alpha_d)\). This paper proves that this result remains true when the box dimension is replaced by the Hausdorff dimension or the packing dimension.

MSC:

60G15 Gaussian processes
60G17 Sample path properties
60G60 Random fields
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
60G50 Sums of independent random variables; random walks

References:

[1] Adler, R. J.: The geometry of random fields. Wiley, New York, 1981. · Zbl 0478.60059
[2] Ayache, A., Léger, S. and Pontier, M.: Drap Brownien Fractionnaire. Potential Anal. 17 (2002), 31-43. · Zbl 1006.60029 · doi:10.1023/A:1015260803576
[3] Ayache, A., Léger, S. and Pontier, M.: Les ondelettes ‘ a la conqu\hat ete du drap brownien fractionnaire. C. R. Math. Acad. Sci. Paris 335 (2002), 1063-1068. · Zbl 1014.60057 · doi:10.1016/S1631-073X(02)02603-1
[4] Ayache, A. and Taqqu, M.,S.: Rate optimality of wavelet series approxi- mations of fractional Brownian motion. J. Fourier Anal. Appl. 9 (2003), 451-471. · Zbl 1050.60043 · doi:10.1007/s00041-003-0022-0
[5] Bardina, X., Jolis, M. and Tudor, C. A.: Weak convergence to the fractional brownian sheet. Prepublicacions UAB 6, 2002. · Zbl 1116.60328
[6] Berman, S. M.: Gaussian sample functions: uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46 (1972), 63-86. · Zbl 0246.60038
[7] Ciesielski, Z. and Kamont, A.: Levy’s fractional Brownian random field and function spaces. Acta Sci. Math. (Szeged) 60 (1995), 99-118. · Zbl 0830.60032
[8] Cuzick, J.: Some local properties of Gaussian vector fields. Ann. Probab. 6 (1978), 984-994. · Zbl 0395.60038 · doi:10.1214/aop/1176995388
[9] Doukhan, P., Oppenheim, G. and Taqqu, M. S. (eds.): Theory and applications of long-range dependence. Birkhäuser, Boston, 2003. · Zbl 1005.00017
[10] Geman, D. and Horowitz, J.: Occupation densities. Ann. Probab. 8 (1980), 1-67. · Zbl 0499.60081 · doi:10.1214/aop/1176994824
[11] Goldman, A.: Points multiples des trajectoires de processus Gaussiens. Z. Wahrsch. Verw. Gebiete 57 (1981), 481-494. · Zbl 0472.60037 · doi:10.1007/BF01025870
[12] Kahane, J. P.: Some random series of functions, 2nd. ed. Cambridge Stud- ies in Advanced Mathematics 5. Cambridge Univ. Press, Cambridge, 1985. · Zbl 0571.60002
[13] Kolmogorov, A.: Wienersche Spiralen und einige andere interessante Kurven in Hilbertsche Raum. C. R. (Dokl.) Acad. Sci. URSS 26 (1940), 115-118. · Zbl 0022.36001
[14] Kamont,A.: On the fractional anisotropic Wiener field. Probab. Math. Statist. 16 (1996), 85-98. · Zbl 0857.60046
[15] Falconer, K.: Fractal geometry. Mathematical foundations and applica- tions. John Wiley and Sons, Chichester, 1990. · Zbl 0689.28003
[16] Kühn, T. and Linde, W.: Optimal series representation of fractional Brownian sheets. Bernoulli 8 (2002), 669-696. · Zbl 1012.60074
[17] Lemarié, P.-G. and Meyer, Y.: Ondelettes et bases hilbertiennes. Rev. Mat. Iberoamericana 2 (1986), 1-18. · Zbl 0657.42028
[18] Lindstrom, T.: Fractional Brownian fields as integrals of white noise. Bull. London Math. Soc. 25 (1993), 83-88. · Zbl 0741.60031 · doi:10.1112/blms/25.1.83
[19] Meyer, Y., Sellan, F. and Taqqu, M. S.: Wavelets, generalized white noise and fractional integration: the synthesis of fractional brownian mo- tion. J. Fourier Anal. Appl. 5 (1999), 465-494. · Zbl 0948.60026 · doi:10.1007/BF01261639
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.