×

Testing goodness of fit for point processes via topological data analysis. (English) Zbl 1440.62409

Summary: We introduce tests for the goodness of fit of point patterns via methods from topological data analysis. More precisely, the persistent Betti numbers give rise to a bivariate functional summary statistic for observed point patterns that is asymptotically Gaussian in large observation windows. We analyze the power of tests derived from this statistic on simulated point patterns and compare its performance with global envelope tests. Finally, we apply the tests to a point pattern from an application context in neuroscience. As the main methodological contribution, we derive sufficient conditions for a functional central limit theorem on bounded persistent Betti numbers of point processes with exponential decay of correlations.

MSC:

62R40 Topological data analysis
62G10 Nonparametric hypothesis testing
62H20 Measures of association (correlation, canonical correlation, etc.)
60D05 Geometric probability and stochastic geometry
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60F17 Functional limit theorems; invariance principles
55N20 Generalized (extraordinary) homology and cohomology theories in algebraic topology

Software:

GET; spatstat; TDA

References:

[1] D. Ahlberg, V. Tassion, and A. Teixeira. Sharpness of the phase transition for continuum percolation in \(\mathbbR^2\)., Probab. Theory Related Fields, 172(1):525-581, 2018. · Zbl 1404.60143 · doi:10.1007/s00440-017-0815-8
[2] A. Baddeley and R. Turner. spatstat: An R package for analyzing spatial point patterns., J. Stat. Softw., 12(6):1-42, 2005.
[3] A. J. Baddeley and B. W. Silverman. A cautionary example on the use of second-order methods for analyzing point patterns., Biometrics, 40(4) :1089-1093, 1984.
[4] Y. Baryshnikov and J. E. Yukich. Gaussian limits for random measures in geometric probability., Ann. Appl. Probab., 15(1A):213-253, 2005. · Zbl 1068.60028 · doi:10.1214/105051604000000594
[5] P. J. Bickel and M. J. Wichura. Convergence criteria for multiparameter stochastic processes and some applications., Ann. Math. Statist., 42 :1656-1670, 1971. · Zbl 0265.60011 · doi:10.1214/aoms/1177693164
[6] P. Billingsley., Convergence of Probability Measures. J. Wiley & Sons, New York, second edition, 1999. · Zbl 0944.60003
[7] C. A. N. Biscio and J. Møller. The accumulated persistence function, a new useful functional summary statistic for topological data analysis, with a view to brain artery trees and spatial point process applications., J. Comput. Graph. Statist., 28(3):671-681, 2019. · Zbl 07499085
[8] B. Błaszczyszyn and D. Yogeshwaran. Clustering and percolation of point processes., Electron. J. Probab., 18:1-20, 2013. · Zbl 1291.60099 · doi:10.1214/EJP.v18-2468
[9] B. Błaszczyszyn, D. Yogeshwaran, and J. E. Yukich. Limit theory for geometric statistics of point processes having fast decay of correlations., Ann. Probab., 47(2):835-895, 2019. · Zbl 1467.60021 · doi:10.1214/18-AOP1273
[10] P. Bubenik. Statistical topological data analysis using persistence landscapes., J. Mach. Learn. Res., 16:77-102, 2015. · Zbl 1337.68221
[11] P. Calka, T. Schreiber, and J. E. Yukich. Brownian limits, local limits and variance asymptotics for convex hulls in the ball., Ann. Probab., 41(1):50-108, 2013. · Zbl 1278.60020 · doi:10.1214/11-AOP707
[12] G. Carlsson. Topology and data., Bull. Amer. Math. Soc., 46(2):255-308, 2009. · Zbl 1172.62002 · doi:10.1090/S0273-0979-09-01249-X
[13] F. Chazal and M. Bertrand. High-dimensional topological data analysis. In C. D. Toth, J. O’Rourke, and J. E. Goodman, editors, Handbook of Discrete and Computational Geometry. CRC, Boca Raton, third edition, 2017.
[14] F. Chazal, B. T. Fasy, F. Lecci, A. Rinaldo, and L. Wasserman. Stochastic convergence of persistence landscapes and silhouettes., J. Comput. Geom., 6(2):140-161, 2015. · Zbl 1395.62186
[15] A. D. Christoffersen, J. Møller, and H. S. Christensen. Modelling columnarity of pyramidal cells in the human cerebral cortex., arXiv preprint arXiv:1908.05065, 2019.
[16] J.-F. Coeurjolly, J. Møller, and R. Waagepetersen. Palm distributions for log Gaussian Cox processes., Scand. J. Stat., 44(1):192-203, 2017. · Zbl 1394.60048 · doi:10.1111/sjos.12248
[17] J.-F. Coeurjolly, J. Møller, and R. Waagepetersen. A tutorial on Palm distributions for spatial point processes., Int. Stat. Rev., 85(3):404-420, 2017. · Zbl 07763562
[18] D. J. Daley and D. Vere-Jones., An Introduction to the Theory of Point Processes. Springer-Verlag, New York, second edition, 2003. · Zbl 1026.60061
[19] H. Edelsbrunner and J. Harer., Computational Topology. American Mathematical Society, Providence, RI, 2010. · Zbl 1193.55001
[20] P. Eichelsbacher, M. Raič, and T. Schreiber. Moderate deviations for stabilizing functionals in geometric probability., Ann. Inst. Henri Poincaré Probab. Stat., 51(1):89-128, 2015. · Zbl 1312.60033 · doi:10.1214/13-AIHP576
[21] B. T. Fasy, J. Kim, F. Lecci, and C. Maria. Introduction to the R package TDA., arXiv preprint arXiv:1411.1830, 2014.
[22] A. Goldman. The Palm measure and the Voronoi tessellation for the Ginibre process., Ann. Appl. Probab., 20(1):90-128, 2010. · Zbl 1197.60047 · doi:10.1214/09-AAP620
[23] L. Heinrich. Gaussian limits of empirical multiparameter \(K\)-functions of homogeneous Poisson processes and tests for complete spatial randomness., Lith. Math. J., 55(1):72-90, 2015. · Zbl 1319.60068 · doi:10.1007/s10986-015-9266-z
[24] L. Heinrich. On the strong Brillinger-mixing property of \(\alpha \)-determinantal point processes and some applications., Appl. Math., 61(4):443-461, 2016. · Zbl 1488.60126 · doi:10.1007/s10492-016-0141-y
[25] L. Heinrich and V. Schmidt. Normal convergence of multidimensional shot noise and rates of this convergence., Adv. in Appl. Probab., 17(4):709-730, 1985. · Zbl 0609.60036 · doi:10.1017/S0001867800015378
[26] Y. Hiraoka, T. Shirai, and K. D. Trinh. Limit theorems for persistence diagrams., Ann. Appl. Probab., 28(5) :2740-2780, 2018. · Zbl 1402.60059 · doi:10.1214/17-AAP1371
[27] J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág., Zeros of Gaussian Analytic Functions and Determinantal Point Processes. American Mathematical Society, Providence, 2009. · Zbl 1190.60038
[28] S. Jansen. Continuum percolation for Gibbsian point processes with attractive interactions., Electron. J. Probab., 21:No. 47, 22, 2016. · Zbl 1385.60059 · doi:10.1214/16-EJP4175
[29] J. L. Jensen and H. R. Künsch. On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes., Ann. Inst. Statist. Math., 46(3):475-486, 1994. · Zbl 0820.62083
[30] O. Kallenberg., Foundations of Modern Probability. Springer, New York, second edition, 2002. · Zbl 0996.60001
[31] J. T. N. Krebs and W. Polonik. On the asymptotic normality of persistent Betti numbers., arXiv preprint arXiv:1903.03280, 2019.
[32] G. Last and M. Penrose., Lectures on the Poisson process. Cambridge University Press, Cambridge, 2018. · Zbl 1392.60004
[33] R. Meester and R. Roy., Continuum Percolation. Cambridge University Press, Cambridge, 1996. · Zbl 0858.60092
[34] J. Møller, F. Safavimanesh, and J. G. Rasmussen. The cylindrical \(K\)-function and Poisson line cluster point processes., Biometrika, 103(4):937-954, 2016. · Zbl 1506.62380 · doi:10.1093/biomet/asw044
[35] J. Møller and R. P. Waagepetersen., Statistical Inference and Simulation for Spatial Point Processes. CRC, Boca Raton, 2004. · Zbl 1044.62101
[36] M. Myllymäki, T. Mrkvička, P. Grabarnik, H. Seijo, and U. Hahn. Global envelope tests for spatial processes., J. R. Stat. Soc. Ser. B. Stat. Methodol., 79(2):381-404, 2017. · Zbl 1414.62404 · doi:10.1111/rssb.12172
[37] T. Owada and A. Thomas. Limit theorems for process-level Betti numbers for sparse, critical, and Poisson regimes., Adv. in Appl. Probab., 2020, to appear. · Zbl 1456.60044
[38] G. Peccati and M. S. Taqqu., Wiener Chaos: Moments, Cumulants and Diagrams. Springer, Milan, 2011. · Zbl 1231.60003
[39] A. H. Rafati, F. Safavimanesh, K.-A. Dorph-Petersen, J. G. Rasmussen, J. Møller, and J. R. Nyengaard. Detection and spatial characterization of minicolumnarity in the human cerebral cortex., Journal of Microscopy, 261(1):115-126, 2016.
[40] A. Xia and J. E. Yukich. Normal approximation for statistics of Gibbsian input in geometric probability., Adv. in Appl. Probab., 47(4):934-972, 2015. · Zbl 1333.60037 · doi:10.1239/aap/1449859795
[41] D. Yogeshwaran and R. J. Adler. On the topology of random complexes built over stationary point processes., Ann. Appl. Probab., 25(6) :3338-3380, 2015. · Zbl 1328.60123 · doi:10.1214/14-AAP1075
[42] D. · Zbl 1366.60033 · doi:10.1007/s00440-015-0678-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.