×

Random line tessellations of the plane: Statistical properties of many-sided cells. (English) Zbl 1160.60005

A Voronoi tessellation of \(\mathbb{R}^2\) is a partitioning of the plane into cells constructed around point particles in such a way that each point of the space is in the cell of the particle to which it is closest. When the point particle corresponds to a homogeneous Poisson point process, the resulting partition is said to be a Poisson-Voronoi tessellation.
A different way of partitioning the plane into cells is by means of intersecting straight lines. When these correspond to a homogeneous Poisson line process, the partition is said to be a Poisson line tessellation.
The Poisson-Voronoi tessellation and the Poisson line tessellation are both statistically invariant under translations and rotations in the plane, and, for both, the cells are convex polygons. The cell that contains the origin is generally called the zero-cell, or Crofton cell in the Poisson line tessellation. The cell property most studied is the sidedness probability \(p_n\), that is, the probability for the cell to have \(n\) sides.
Let \(a\) be a line in the plane and \(\mathbb{R}_a\) be the projection of the origin onto that line, so that \(a\) is uniquely determined by \(\mathbb{R}_a\). In this paper the projection vectors are distributed with a density \(\rho(R) = cst\times \mathbb{R}^{\alpha-2}\), with \(\alpha\geq 1\), so that a family of tessellations, depending on \(\alpha\) is obtained. The authors study the asymptotic large-\(n\) expansion of the sidedness probability \(p_n(\alpha)\) of the zero-cell. Special cases are the typical Poisson-Voronoi cell \((\alpha = 2)\), and the Crofton cell \((\alpha = 1)\). In the large-\(n\) limit the cell is shown to become circular. The circle is centered at the origin when \(\alpha>1\), but gets delocalized for the Crofton cell. The paper ends with a few interesting remarks concerning possible further works.

MSC:

60D05 Geometric probability and stochastic geometry

References:

[1] Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. Wiley, New York (2000) · Zbl 0946.68144
[2] Goudsmit, S.: Rev. Mod. Phys. 17, 321 (1945) · Zbl 0063.01715 · doi:10.1103/RevModPhys.17.321
[3] Miles, R.E.: Proc. Natl. Acad. Sci. USA 52, 901 (1964) · Zbl 0122.17301 · doi:10.1073/pnas.52.4.901
[4] Miles, R.E.: Proc. Natl. Acad. Sci. USA 52, 1157 (1964) · Zbl 0133.16001 · doi:10.1073/pnas.52.5.1157
[5] Miles, R.E.: Adv. Math. 10, 256 (1973) · Zbl 0292.60020 · doi:10.1016/0001-8708(73)90110-2
[6] Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975) · Zbl 0321.60009
[7] Kovalenko, I.N.: J. Appl. Math. Stoch. Anal. 11, 369 (1998) · Zbl 0919.60021 · doi:10.1155/S1048953398000306
[8] Kovalenko, I.N.: J. Appl. Math. Stoch. Anal. 12, 301 (1999) · doi:10.1155/S1048953399000283
[9] Goldman, A.: Ann. Probab. 26, 1727 (1998) · Zbl 0936.60009 · doi:10.1214/aop/1022855880
[10] Hug, D., Reitzner, M., Schneider, R.: Adv. Appl. Probab. 36, 667 (2004) · Zbl 1069.60010 · doi:10.1239/aap/1093962228
[11] Santaló, L.A.: Introduction to Integral Geometry. Hermann, Paris (1953). This formula expresses the length of a planar curve in terms of its number of intersections with the set of straight lines in that plane
[12] Tanner, J.C.: J. Appl. Probab. 20, 400 (1983) · Zbl 0524.60015 · doi:10.2307/3213813
[13] Crain, I., Miles, R.E.: J. Stat. Comput. Simul. 4, 293 (1976) · Zbl 0345.65001 · doi:10.1080/00949657608810132
[14] George, E.I.: J. Appl. Probab. 24, 557 (1987) · Zbl 0633.60020 · doi:10.2307/3214089
[15] Michel, J., Paroux, K.: Methodol. Comput. Appl. Probab. (2007). Available online
[16] Calka, P.: Adv. Appl. Probab. 35, 551 (2003) · Zbl 1045.60005 · doi:10.1239/aap/1059486817
[17] Hilhorst, H.J.: J. Stat. Mech. Exp. L02003 (2005)
[18] Hilhorst, H.J.: J. Stat. Mech. Exp. P09005 (2005)
[19] Hilhorst, H.J.: Eur. Phys. J. B (2008). Available online
[20] Hilhorst, H.J.: J. Phys. A 40, 2615 (2007) · Zbl 1120.65002 · doi:10.1088/1751-8113/40/11/002
[21] Hilhorst, H.J.: J. Phys. A 39, 7227 (2006) · Zbl 1097.81960 · doi:10.1088/0305-4470/39/23/004
[22] Hug, D., Schneider, R.: Geom. Funct. Anal. 17, 156 (2007) · Zbl 1114.60012 · doi:10.1007/s00039-007-0592-0
[23] Møller, J.: Lectures on Random Voronoi Tessellations. Springer, Berlin (1994) · Zbl 0812.60016
[24] Miles, R.E.: Adv. Appl. Probab. 27, 397 (1995) · Zbl 0829.60008 · doi:10.2307/1427833
[25] Calka, P., Schreiber, T.: Ann. Probab. 33, 1625 (2005) · Zbl 1084.60008 · doi:10.1214/009117905000000134
[26] Schneider, R.: Convex Bodies–the Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993) · Zbl 0798.52001
[27] Miles, R.E., Maillardet, R.J.: J. Appl. Probab. 19 A, 97 (1982) · doi:10.2307/3213553
[28] Calka, P.: Adv. Appl. Probab. 35, 863 (2003) · Zbl 1038.60008 · doi:10.1239/aap/1067436323
[29] Brillinger, D.R.: Times Series Data Analysis and Theory. Holt, Rinehard and Winston, New York (1975) · Zbl 0321.62004
[30] Brillinger, D.R., Rosenblatt, M.: Spectral Analysis of Time Series. Wiley, New York (1967), p. 183 · Zbl 0157.47402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.