×

On the \(K\)-theory of groups with finite asymptotic dimension. (English) Zbl 1144.19001

J. Reine Angew. Math. 612, 35-57 (2007); erratum ibid. 726, 291-292 (2017).
Extending the results from A. C. Bartels [\(K\)-Theory 28, No. 1, 19–37 (2003; Zbl 1036.19002)] by relaxing the finite \(B\Gamma\) assumption for a discrete group \(\Gamma\), it is proved that the assembly map in algebraic \(K\)-theory is a split injection, where it is assumed that there is a finite-dimensional \(\Gamma\)-CW-model for the universal space for proper \(\Gamma\)-actions, and there is a \(\Gamma\)-invariant metric on the space such that the space is uniformly contractible in some sense, and is a complete proper path metric space, and has finite asymptotic dimension.
Consequently, it follows that the assembly map in algebraic \(K\)-theory is split injective for \(\Gamma\) such that either it is a discrete subgroup of a virtually connected Lie group, or it has finite asymptotic dimension and admits a cocompact \(\Gamma\)-CW-model for the universal space. Furthermore, it is deduced that the assemply map in \(L\)-theory is a split injection under the same assumption and an additional one on vanishing of (negative) higher \(K\)-groups of the group rings for finite subgroups of \(\Gamma\).

MSC:

19A31 \(K_0\) of group rings and orders
19D50 Computations of higher \(K\)-theory of rings
19B28 \(K_1\) of group rings and orders
19G24 \(L\)-theory of group rings
22D15 Group algebras of locally compact groups
22E40 Discrete subgroups of Lie groups

Citations:

Zbl 1036.19002

References:

[1] DOI: 10.1016/0022-4049(94)90004-3 · Zbl 0854.55003 · doi:10.1016/0022-4049(94)90004-3
[2] DOI: 10.2140/agt.2003.3.1037 · Zbl 1038.19001 · doi:10.2140/agt.2003.3.1037
[3] DOI: 10.1023/A:1024166521174 · Zbl 1036.19002 · doi:10.1023/A:1024166521174
[4] DOI: 10.1007/BF01231296 · Zbl 0804.55004 · doi:10.1007/BF01231296
[5] DOI: 10.1007/BF00961467 · Zbl 0829.18005 · doi:10.1007/BF00961467
[6] DOI: 10.1007/s00222-003-0356-x · Zbl 1071.19003 · doi:10.1007/s00222-003-0356-x
[7] DOI: 10.1016/j.jalgebra.2004.02.006 · Zbl 1057.22013 · doi:10.1016/j.jalgebra.2004.02.006
[8] DOI: 10.1016/0040-9383(94)00033-H · Zbl 0838.55004 · doi:10.1016/0040-9383(94)00033-H
[9] DOI: 10.1023/A:1007784106877 · Zbl 0921.19003 · doi:10.1023/A:1007784106877
[10] DOI: 10.2307/2152801 · Zbl 0798.57018 · doi:10.2307/2152801
[11] DOI: 10.1007/BF01232272 · Zbl 0744.57017 · doi:10.1007/BF01232272
[12] DOI: 10.1007/s00208-003-0454-5 · Zbl 1051.19002 · doi:10.1007/s00208-003-0454-5
[13] DOI: 10.1007/PL00001630 · Zbl 0962.46052 · doi:10.1007/PL00001630
[14] Higson N., Math. 519 pp 143– (2000)
[15] Ji L., J. Di{\currency}. Geom. 68 (3) pp 535– (2004)
[16] DOI: 10.1007/BF01404917 · Zbl 0647.46053 · doi:10.1007/BF01404917
[17] DOI: 10.1023/B:KTHE.0000018387.87156.c4 · Zbl 1053.55004 · doi:10.1023/B:KTHE.0000018387.87156.c4
[18] Lück W., Math. 543 pp 193– (2002)
[19] DOI: 10.1007/3-7643-7447-0_7 · doi:10.1007/3-7643-7447-0_7
[20] DOI: 10.1007/BF00538881 · Zbl 0756.55003 · doi:10.1007/BF00538881
[21] DOI: 10.1023/B:KTHE.0000037563.35102.0d · Zbl 1068.19008 · doi:10.1023/B:KTHE.0000037563.35102.0d
[22] DOI: 10.1515/form.2002.007 · Zbl 0995.19003 · doi:10.1515/form.2002.007
[23] DOI: 10.2307/121011 · Zbl 0911.19001 · doi:10.2307/121011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.