×

The Novikov conjecture. (English. Russian original) Zbl 1439.19009

Russ. Math. Surv. 74, No. 3, 525-541 (2019); translation from Usp. Mat. Nauk 74, No. 3, 167-184 (2019).
In the current pure mathematical universe, Novikov Conjecture is one of the central problems. Novikov Conjecture has its root to the Hirzebruch signature theorem, which states that the signature of an oriented closed \(4k\)-dimensional manifold in terms of characteristic classes can be expressed by a linear combination of Pontryagin numbers called the \(L\)-genus. Novikov Conjecture states that higher signatures are homotopy invariants for all orientation-preserving homotopy equivalences between closed oriented \(n\)-dimensional manifolds.
This survey concentrates on “the analytic approach based on ideas from noncommutative geometry”. “The Novikov Conjecture follows from the rational strong Novikov Conjecture, which states that the rational Kasparov-Baum-Connes map is injective, where the Kasparov-Baum-Connes map is the assembly map from the \(K\)-homology of the classifying space for the fundamental group to the \(K\)-theory of the group \(C^*\)-algebra associated to the fundamental group.” Along this path, a long list of groups that have been proved for the Novikov Conjecture is summarized. The author puts them into several categories.
The first class of groups is associated with various non-positive curvature conditions. The key words are non-positively curved groups, hyperbolic groups and bolic groups. Connes’ cyclic cohomology theory, Kasparov’s \(KK\)-theory, Gromov’s hyperbolic group theory were developed in order to prove some of the results.
The second class of groups is associated to asymptotic dimensions, Yu’s Property A, Hilbert spaces and Banach spaces. In the research of this class, a lot of beautiful theories were developed, such as Higson-Kasparov’s \(E\)-theory, Yu’s quantitative operator \(K\)-theory, Yu’s localization algebra. This is an expeditiously expanding area recently. Various inspiring concepts and techniques were developed in the last two decades. Kasparov-Yu’s Property \(H\) of Banach spaces is discussed which is used to generalize the proof from the Hilbert space case to certain Banach space cases. Several open questions are included in this section.
In the recent work by Gong-Wu-Yu, the authors proved that the Novikov Conjecture holds for groups acting properly and isometrically on infinite dimensional non-positively curved spaces. In particular, this implies the Novikov Conjecture for geometrically discrete subgroups of the group of volume preserving diffeomorphisms.
In the final part, the author introduces geometric complexity, a generalization of asymptotic dimensions, and discussed the work of Guentner-Tessera-Yu on the stable Borel Conjecture, a fundamental problem on rigidity of manifolds.

MSC:

19K56 Index theory
57R20 Characteristic classes and numbers in differential topology
19K35 Kasparov theory (\(KK\)-theory)
20F65 Geometric group theory
57M07 Topological methods in group theory

References:

[1] P. Antonini, S. Azzali, and G. Skandalis 2018 The Baum-Connes conjecture localised at the unit element of a discrete group 1807.05892 19 pp.
[2] G. N. Arzhantseva and T. Delzant 2011 (v1 - 2008) Examples of random groups, Preprint 30 pp. http://www.mat.univie.ac.at/ arjantseva/Abs/random.pdf
[3] A. C. Bartels 2003 Squeezing and higher algebraic \(K\)-theory \(K\)-Theory28 1 19-37 · Zbl 1036.19002 · doi:10.1023/A:1024166521174
[4] P. Baum and A. Connes 1988 K-theory for discrete groups Operator algebras and applications London Math. Soc. Lecture Note Ser. 135, 1 Cambridge Univ. Press, Cambridge 1-20 · Zbl 0685.46041 · doi:10.1017/CBO9780511662270.003
[5] P. Baum, A. Connes, and N. Higson 1994 Classifying space for proper actions and \(K\)-theory of group \(C^\ast \)-algebras \(C^\ast \)-algebras: 1943-1993San Antonio, TX 1993 Contemp. Math. 167 Amer. Math. Soc., Providence, RI 240-291 · Zbl 0830.46061 · doi:10.1090/conm/167/1292018
[6] A. Bartels and W. Lück 2012 The Borel conjecture for hyperbolic and \(\text{CAT}(0)\)-groups Ann. of Math. (2)175 2 631-689 · Zbl 1256.57021 · doi:10.4007/annals.2012.175.2.5
[7] A. Bartels, W. Lück, and H. Reich 2008 The \(K\)-theoretic Farrell-Jones conjecture for hyperbolic groups Invent. Math.172 1 29-70 · Zbl 1143.19003 · doi:10.1007/s00222-007-0093-7
[8] A. Bartels and D. Rosenthal 2007 On the \(K\)-theory of groups with finite asymptotic dimension J. Reine Angew. Math.2007 612 35-57 · Zbl 1144.19001 · doi:10.1515/CRELLE.2007.083
[9] M. E. B. Bekka, P.-A. Cherix, and A. Valette 1995 Proper affine isometric actions of amenable groups Novikov conjectures, index theorems and rigidityOberwolfach 1993 London Math. Soc. Lecture Note Ser. 227, 2 Cambridge Univ. Press, Cambridge 1-4 · Zbl 0959.43001 · doi:10.1017/CBO9780511629365.003
[10] G. Bell and A. Dranishnikov 2001 On asymptotic dimension of groups Algebr. Geom. Topol.1 57-71 · Zbl 1008.20039 · doi:10.2140/agt.2001.1.57
[11] G. C. Bell and A. N. Dranishnikov 2006 A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory Trans. Amer. Math. Soc.358 11 4749-4764 · Zbl 1117.20032 · doi:10.1090/S0002-9947-06-04088-8
[12] M. Bestvina, K. Bromberg, and K. Fujiwara 2015 Constructing group actions on quasi-trees and applications to mapping class groups Publ. Math. Inst. Hautes Études Sci.122 1-64 · Zbl 1372.20029 · doi:10.1007/s10240-014-0067-4
[13] M. Bestvina, V. Guirardel, and C. Horbez 2017 Boundary amenability of \(\operatorname{Out}(F_N)\) 1705.07017 53 pp.
[14] N. Brown and E. Guentner 2005 Uniform embeddings of bounded geometry spaces into reflexive Banach space Proc. Amer. Math. Soc.133 7 2045-2050 · Zbl 1069.46003 · doi:10.1090/S0002-9939-05-07721-X
[15] G. Carlsson and B. Goldfarb 2004 The integral \(K\)-theoretic Novikov conjecture for groups with finite asymptotic dimension Invent. Math.157 2 405-418 · Zbl 1071.19003 · doi:10.1007/s00222-003-0356-x
[16] G. Carlsson and E. K. Pedersen 1995 Controlled algebra and the Novikov conjectures for \(K\)- and \(L\)-theory Topology34 3 731-758 · Zbl 0838.55004 · doi:10.1016/0040-9383(94)00033-H
[17] S. S. Chang, S. Ferry, and G. Yu 2008 Bounded rigidity of manifolds and asymptotic dimension growth J. K-Theory1 1 129-144 · Zbl 1202.53048 · doi:10.1017/is007011012jkt008
[18] A. Connes 1986 Cyclic cohomology and the transverse fundamental class of a foliation Geometric methods in operator algebrasKyoto 1983 Pitman Res. Notes Math. Ser. 123 Longman Sci. Tech., Harlow 52-144 · Zbl 0647.46054
[19] A. Connes 1994 Noncommutative geometry Academic Press, Inc., San Diego, CA xiv+661 pp. · Zbl 0818.46076
[20] A. Connes, M. Gromov, and H. Moscovici 1993 Group cohomology with Lipschitz control and higher signatures Geom. Funct. Anal.3 1 1-78 · Zbl 0789.58069 · doi:10.1007/BF01895513
[21] A. Connes and N. Higson 1990 Déformations, morphismes asymptotiques et \(K\)-théorie bivariante C. R. Acad. Sci. Paris Sér. I Math.311 2 101-106 · Zbl 0717.46062
[22] A. Connes and H. Moscovici 1990 Cyclic cohomology, the Novikov conjecture and hyperbolic groups Topology29 3 345-388 · Zbl 0759.58047 · doi:10.1016/0040-9383(90)90003-3
[23] M. W. Davis 1983 Groups generated by reflections and aspherical manifolds not covered by Euclidean space Ann. of Math. (2)117 2 293-324 · Zbl 0531.57041 · doi:10.2307/2007079
[24] A. N. Dranishnikov, S. C. Ferry, and S. A. Weinberger 2008 An etale approach to the Novikov conjecture Comm. Pure Appl. Math.61 2 139-155 · Zbl 1137.57027 · doi:10.1002/cpa.20222
[25] A. Dranishnikov and T. Januszkiewicz 1999 Every Coxeter group acts amenably on a compact space Topology Proc.Salt Lake City, UT24 Spring 135-141 Proceedings of the 1999 topology and dynamics conference · Zbl 0973.20029
[26] F. T. Farrell and W. C. Hsiang 1981 On Novikov’s conjecture for non-positively curved manifolds. I Ann. of Math. (2)113 1 199-209 · Zbl 0461.57016 · doi:10.2307/1971138
[27] F. T. Farrell and L. E. Jones 1989 A topological analogue of Mostow’s rigidity theorem J. Amer. Math. Soc.2 2 257-370 · Zbl 0696.57018 · doi:10.2307/1990978
[28] F. T. Farrell and L. E. Jones 1990 Classical aspherical manifolds CBMS Regional Conf. Ser. in Math. 75 Conf. Board Math. Sci., Washington, DC, Amer. Math. Soc., Providence, RI viii+54 pp. · doi:10.1090/cbms/075
[29] F. T. Farrell and L. E. Jones 1993 Topological rigidity for compact nonpositively curved manifolds Differential geometry: Riemannian geometryLos Angeles, CA 1990 Proc. Sympos. Pure Math. 54 Amer. Math. Soc., Providence, RI 229-274 Part 3 · Zbl 0796.53043
[30] F. T. Farrell and L. E. Jones 1998 Rigidity for aspherical manifolds with \(\pi_1\subset\operatorname{GL}_m(\mathbb R)\) Asian J. Math.2 2 215-262 · Zbl 0912.57012 · doi:10.4310/AJM.1998.v2.n2.a1
[31] S. C. Ferry and E. K. Pedersen 1995 Epsilon surgery theory Novikov conjectures, index theorems and rigidityOberwolfach 1993 London Math. Soc. Lecture Note Ser. 227, 2 Cambridge Univ. Press, Cambridge 167-226 · Zbl 0956.57020 · doi:10.1017/CBO9780511629365.007
[32] S. C. Ferry and S. Weinberger 1991 Curvature, tangentiality, and controlled topology Invent. Math.105 2 401-414 · Zbl 0744.57017 · doi:10.1007/BF01232272
[33] S. C. Ferry and S. Weinberger 1995 A coarse approach to the Novikov conjecture Novikov conjectures, index theorems, and rigidityOberwolfach 1993 London Math. Soc. Lecture Note Ser. 226, 1 Cambridge Univ. Press, Cambridge 147-163 · Zbl 0954.57006 · doi:10.1017/CBO9780511662676.008
[34] D. Fisher and L. Silberman 2008 Groups not acting on manifolds Int. Math. Res. Not. IMRN2008 16 rnn060 11 pp. · Zbl 1154.22024 · doi:10.1093/imrn/rnn060
[35] S. Gong, J. Wu, and G. Yu 2019 (v1 - 2018) The Novikov conjecture, the group of volume preserving diffeomorphisms and Hilbert-Hadamard spaces 1811.02086 52 pp.
[36] Р. И. Григорчук 1984 Степени роста конечно-порожденных групп и теория инвариантных средних Изв. АН СССР. Сер. матем.48 5 939-985
[37] English transl. R. I. Grigorchuk 1985 Degrees of growth of finitely generated groups, and the theory of invariant means Math. USSR-Izv.25 2 259-300 · Zbl 0583.20023 · doi:10.1070/IM1985v025n02ABEH001281
[38] M. Gromov 1987 Hyperbolic groups Essays in group theory Math. Sci. Res. Inst. Publ. 8 Springer, New York 75-263 · Zbl 0634.20015 · doi:10.1007/978-1-4613-9586-7_3
[39] M. Gromov 1993 Asymptotic invariants of infinite groups Geometric group theorySussex 1991 London Math. Soc. Lecture Note Ser. 182, 2 Cambridge Univ. Press, Cambridge 1-295
[40] M. Gromov 2000 Spaces and questions Geom. Funct. Anal.Tel Aviv 1999Special Volume, Part I 118-161 · Zbl 1006.53035
[41] M. Gromov 2003 Random walks in random groups Geom. Funct. Anal.13 1 73-146 · Zbl 1122.20021 · doi:10.1007/s000390300002
[42] E. Guentner, N. Higson, and S. Weinberger 2005 The Novikov conjecture for linear groups Publ. Math. Inst. Hautes Études Sci.101 243-268 · Zbl 1073.19003 · doi:10.1007/s10240-005-0030-5
[43] E. Guentner, R. Tessera, and G. Yu 2012 A notion of geometric complexity and its application to topological rigidity Invent. Math.189 2 315-357 · Zbl 1257.57028 · doi:10.1007/s00222-011-0366-z
[44] E. Guentner, R. Tessera, and G. Yu 2013 Discrete groups with finite decomposition complexity Groups Geom. Dyn.7 2 377-402 · Zbl 1272.52041 · doi:10.4171/GGD/186
[45] U. Hamenstädt 2009 Geometry of the mapping class groups. I. Boundary amenability Invent. Math.175 3 545-609 · Zbl 1197.57003 · doi:10.1007/s00222-008-0158-2
[46] B. Hanke and T. Schick 2008 The strong Novikov conjecture for low degree cohomology Geom. Dedicata135 119-127 · Zbl 1149.19006 · doi:10.1007/s10711-008-9266-9
[47] N. Higson 2000 Bivariant \(K\)-theory and the Novikov conjecture Geom. Funct. Anal.10 3 563-581 · Zbl 0962.46052 · doi:10.1007/PL00001630
[48] N. Higson and G. Kasparov \(2001 E\)-theory and \(KK\)-theory for groups which act properly and isometrically on Hilbert space Invent. Math.144 1 23-74 · Zbl 0988.19003 · doi:10.1007/s002220000118
[49] M. Hilsum and G. Skandalis 1992 Invariance par homotopie de la signature à coefficients dans un fibré presque plat J. Reine Angew. Math.1992 423 73-99 · Zbl 0731.55013 · doi:10.1515/crll.1992.423.73
[50] L. Ji 2008 The integral Novikov conjectures for linear groups containing torsion elements J. Topol.1 2 306-316 · Zbl 1162.57022 · doi:10.1112/jtopol/jtm002
[51] W. B. Johnson and N. L. Randrianarivony \(2006 \ell_p (p>2)\) does not coarsely embed into a Hilbert space Proc. Amer. Math. Soc.134 1045-1050 · Zbl 1097.46051 · doi:10.1090/S0002-9939-05-08415-7
[52] G. G. Kasparov 1988 Equivariant \(KK\)-theory and the Novikov conjecture Invent. Math.91 1 147-201 · Zbl 0647.46053 · doi:10.1007/BF01404917
[53] G. Kasparov and G. Skandalis 2003 Groups acting properly on “bolic” spaces and the Novikov conjecture Ann. of Math. (2)158 1 165-206 · Zbl 1029.19003 · doi:10.4007/annals.2003.158.165
[54] G. Kasparov and G. Yu 2012 The Novikov conjecture and geometry of Banach spaces Geom. Topol.16 3 1859-1880 · Zbl 1257.19003 · doi:10.2140/gt.2012.16.1859
[55] Y. Kida 2008 The mapping class group from the viewpoint of measure equivalence theory Mem. Amer. Math. Soc. 196 Amer. Math. Soc., Providence, RI 916 viii+190 pp. · Zbl 1277.37008 · doi:10.1090/memo/0916
[56] M. Mendel and A. Naor 2008 Metric cotype Ann. of Math. (2)168 1 247-298 · Zbl 1187.46014 · doi:10.4007/annals.2008.168.247
[57] V. Mathai 2003 The Novikov conjecture for low degree cohomology classes Geom. Dedicata99 1-15 · Zbl 1029.19006 · doi:10.1023/A:1024941020306
[58] А. С. Мищенко 1974 Бесконечномерные представления дискретных групп и высшие сигнатуры Изв. АН СССР. Сер. матем.38 1 81-106 · Zbl 0292.57017
[59] English transl. A. S. Miščenko 1974 Infinite-dimensional representations of discrete groups, and higher signatures Math. USSR-Izv.8 1 85-111 · Zbl 0299.57010 · doi:10.1070/IM1974v008n01ABEH002097
[60] С. П. Новиков 1965 Топологическая инвариантность рациональных классов Понтрягина Докл. АН СССР163 2 298-300
[61] English transl. S. P. Novikov 1965 Topological invariance of rational Pontrjagin classes Soviet Math. Dokl.6 921-923 · Zbl 0146.19502
[62] С. П. Новиков 1970 Алгебраическое построение и свойства эрмитовых аналогов \(K\)-теории над кольцами с инволюцией с точки зрения гамильтонова формализма. Некоторые применения к дифференциальной топологии и теории характеристических классов. I Изв. АН СССР. Сер. матем.34 2 253-288
[63] С. П. Новиков 1970 II Изв. АН СССР. Сер. матем.34 3 475-500 · Zbl 0201.25602
[64] English transl. S. P. Novikov 1970 Algebraic construction and properties of Hermitian analogs of K-theory over rings with involution from the viewpoint of Hamiltonian formalism. Applications to differential topology and the theory of characteristic classes. I Math. USSR-Izv.4 2 257-292 · Zbl 0216.45003 · doi:10.1070/IM1970v004n02ABEH000903
[65] S. P. Novikov 1970 II Math. USSR-Izv.4 3 479-505 · Zbl 0233.57009 · doi:10.1070/IM1970v004n03ABEH000916
[66] P. W. Nowak and G. Yu 2012 Large scale geometry EMS Textbk. Math. Eur. Math. Soc., Zürich xiv+189 pp. · Zbl 1264.53051 · doi:10.4171/112
[67] D. Osajda 2014 Small cancellation labellings of some infinite graphs and applications 1406.5015 27 pp.
[68] H. Oyono-Oyono and G. Yu 2015 On quantitative operator \(K\)-theory Ann. Inst. Fourier (Grenoble)65 2 605-674 · Zbl 1329.19009 · doi:10.5802/aif.2940
[69] D. A. Ramras, R. Tessera, and G. Yu 2014 Finite decomposition complexity and the integral Novikov conjecture for higher algebraic \(K\)-theory J. Reine Angew. Math.694 129-178 · Zbl 1306.18005 · doi:10.1515/crelle-2012-0112
[70] J. Roe 1993 Coarse cohomology and index theory on complete Riemannian manifolds Mem. Amer. Math. Soc. 104 Amer. Math. Soc., Providence, RI N. 497, x+90 pp. · Zbl 0780.58043 · doi:10.1090/memo/0497
[71] J. Roe 1996 Index theory, coarse geometry, and topology of manifolds CBMS Regional Conf. Ser. in Math. 90 Conf. Board Math. Sci., Washington, DC, Amer. Math. Soc., Providence, RI x+100 pp. · Zbl 0853.58003 · doi:10.1090/cbms/090
[72] J. Roe 2005 Hyperbolic groups have finite asymptotic dimension Proc. Amer. Math. Soc.133 9 2489-2490 · Zbl 1070.20051 · doi:10.1090/S0002-9939-05-08138-4
[73] J. Rosenberg \(1983 C^\ast \)-algebras, positive scalar curvature, and the Novikov conjecture Inst. Hautes Études Sci. Publ. Math.58 197-212 · Zbl 0526.53044 · doi:10.1007/BF02953775
[74] J. Rosenberg 2007 Manifolds of positive scalar curvature: a progress report Surveys in differential geometry Surv. Differ. Geom. 11, XI Int. Press, Somerville, MA 259-294 · Zbl 1171.53028 · doi:10.4310/SDG.2006.v11.n1.a9
[75] Z. Sela 1992 Uniform embeddings of hyperbolic groups in Hilbert spaces Israel J. Math.80 1-2 171-181 · Zbl 0785.46032 · doi:10.1007/BF02808160
[76] G. Skandalis, J. L. Tu, and G. Yu 2002 The coarse Baum-Connes conjecture and groupoids Topology41 4 807-834 · Zbl 1033.19003 · doi:10.1016/S0040-9383(01)00004-0
[77] S. Weinberger 1990 Aspects of the Novikov conjecture Geometric and topological invariants of elliptic operatorsBrunswick, ME 1988 Contemp. Math. 105 Amer. Math. Soc., Providence, RI 281-297 · Zbl 0705.57013 · doi:10.1090/conm/105/1047285
[78] S. Weinberger 2017 Variations on a theme of Borel, Book draft 326 pp. http://math.uchicago.edu/ shmuell/VTBdraft.pdf
[79] S. Weinberger, Z. Xie, and G. Yu Additivity of higher rho invariants and nonrigidity of topological manifolds Comm. Pure Appl. Math. · Zbl 1476.57044
[80] S. Weinberger, Z. Xie, and G. Yu 2019 (v1 - 2016) 1608.03661 103 pp.
[81] S. Weinberger and G. Yu 2015 Finite part of operator \(K\)-theory for groups finitely embeddable into Hilbert space and the degree of nonrigidity of manifolds Geom. Topol.19 5 2767-2799 · Zbl 1328.19011 · doi:10.2140/gt.2015.19.2767
[82] R. Willett and G. Yu 2019 Higher index theory, Book draft 503 pp., https://math.hawaii.edu/ rufus/Skeleton.pdf
[83] G. Yu 1998 The Novikov conjecture for groups with finite asymptotic dimension Ann. of Math. (2)147 2 325-355 · Zbl 0911.19001 · doi:10.2307/121011
[84] G. Yu 2000 The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space Invent. Math.139 1 201-240 · Zbl 0956.19004 · doi:10.1007/s002229900032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.