×

A large scale approach to decomposition spaces. (English) Zbl 1501.46022

Summary: Decomposition spaces are a class of function spaces constructed out of “well-behaved” coverings and partitions of unity of a set. The structure of the covering determines the properties of the decomposition space. Besov spaces, shearlet spaces, and modulation spaces are well-known decomposition spaces. In this paper, we focus on the geometric aspects of decomposition spaces and utilize that these are naturally captured by the large scale properties of a metric space associated to the covering. We demonstrate that decomposition spaces constructed out of quasi-isometric covered spaces have many geometric features in common.
The notion of geometric embedding is introduced to formalize the way one decomposition space can be embedded into another decomposition space while respecting the geometric features of the coverings. Some consequences of the large scale approach to decomposition spaces are (i) the comparison of coverings of different sets, (ii) the study of embeddings of decomposition spaces based on the geometric features and the symmetries of the coverings, and (iii) the use of notions from large scale geometry, such as asymptotic dimension or hyperbolicity, to study the properties of decomposition spaces.

MSC:

46B99 Normed linear spaces and Banach spaces; Banach lattices
22D05 General properties and structure of locally compact groups
22E25 Nilpotent and solvable Lie groups
51K05 General theory of distance geometry
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
42B35 Function spaces arising in harmonic analysis
53C17 Sub-Riemannian geometry
51F30 Lipschitz and coarse geometry of metric spaces

References:

[1] H. Bass, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. 25 (1972), 603-614. · Zbl 0259.20045
[2] C. Bellettini and E. Le Donne, Regularity of sets with constant horizontal normal in the Engel group, Comm. Anal. Geom. 21 (2013), 469-507. · Zbl 1281.53037
[3] E. Berge, α-Modulation spaces for step two stratified Lie groups, J. Geom. Anal. 32 (2022), no. 2, art. 45, 46 pp. · Zbl 1492.46026
[4] M. Bonk and B. Kleiner, Quasi-hyperbolic planes in hyperbolic groups, Proc. Amer. Math. Soc. 133 (2005), 2491-2494. · Zbl 1123.20036
[5] D. Bump, Lie Groups, 2nd ed., Springer, 2013. · Zbl 1279.22001
[6] D. Bytchenkoff and F. Voigtlaender, Design and properties of wave packet smoothness spaces, J. Math. Pures Appl. 133 (2020), 185-262. · Zbl 1451.42030
[7] G. Carlsson and B. Goldfarb, On homological coherence of discrete groups, J. Al-gebra 276 (2004), 502-514. · Zbl 1057.22013
[8] J. Cheshmavar and H. Führ, A classification of anisotropic Besov spaces, Appl. Comput. Harmon. Anal. 49 (2020), 863-896. · Zbl 1457.46045
[9] W. A. de Graaf, Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2, J. Algebra 309 (2007), 640-653. · Zbl 1137.17012
[10] H. G. Feichtinger, Banach convolution algebras of Wiener type, in: Functions, Series, Operators, Colloq. Math. Soc. János Bolyai 35, North-Holland, 1983, Vol. I, 509-524. · Zbl 0528.43001
[11] H. G. Feichtinger, Banach spaces of distributions defined by decomposition meth-ods. II, Math. Nachr. 132 (1987), 207-237. · Zbl 0586.46031
[12] H. G. Feichtinger and P. Gröbner, Banach spaces of distributions defined by decomposition methods. I, Math. Nachr. 123 (1985), 97-120. · Zbl 0586.46030
[13] V. Fischer, D. Rottensteiner, and M. Ruzhansky, Heisenberg-modulation spaces at the crossroads of coorbit theory and decomposition space theory, arXiv:1812. 07876 (2018).
[14] G. B. Folland, A Course in Abstract Harmonic Analysis, 2nd ed., CRC Press, 2016. · Zbl 1342.43001
[15] L. Funar, Lectures on Fuchsian groups and their moduli, lecture notes for the Summer School “Géométries à courbure négative ou nulle, groupes discrets et rigidités”, Inst. Fourier, Univ. de Grenoble, 2004.
[16] H. Führ and R. Koch, Coarse geometric classification of decomposition and wavelet coorbit spaces, arXiv:2105.13730 (2021).
[17] P. Gröbner, Banachräume glatter Funktionen und Zerlegungsmethoden, PhD thesis, Univ. of Vienna, 1991.
[18] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001. · Zbl 0966.42020
[19] M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. Inst. Hautes Études Sci. 53 (1981), 53-73. · Zbl 0474.20018
[20] M. Gromov, Hyperbolic Groups, in: Essays in Group Theory, Math. Sci. Res. Inst. Publ. 8, Springer, 1987, 75-263. · Zbl 0634.20015
[21] M. Gromov, Asymptotic Invariants of Infinite Groups, Cambridge Univ. Press, 1993. · Zbl 0888.53047
[22] W. C. Guo, D. S. Fan, and G. P. Zhao, Full characterization of the embedding relations between α-modulation spaces, Sci. China Math. 61 (2018), 1243-1272. · Zbl 1402.42032
[23] J. Han and B. Wang, α-Modulation spaces (I) scaling, embedding and algebraic properties, J. Math. Soc. Japan 66 (2014), 1315-1373. · Zbl 1312.42030
[24] T. Koberda, On some of the residual properties of finitely generated nilpotent groups, arXiv:1002.3203 (2010).
[25] R. Koch, Analysis of shearlet coorbit spaces, PhD thesis, RWTH Aachen, 2018.
[26] D. Labate, L. Mantovani, and P. Negi, Shearlet smoothness spaces, J. Fourier Anal. Appl. 19 (2013), 577-611. · Zbl 1306.42049
[27] E. Le Donne, A primer on Carnot groups: homogenous groups, Carnot-Carathé-odory spaces, and regularity of their isometries, Anal. Geom. Metr. Spaces 5 (2017), 116-137. · Zbl 1392.53053
[28] C. Löh, Geometric Group Theory, Springer, 2017. · Zbl 1426.20001
[29] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Math. Surveys Monogr. 91, Amer. Math. Soc., 2002. · Zbl 1044.53022
[30] P. W. Nowak and G. Yu, Large Scale Geometry, Eur. Math. Soc., 2012. · Zbl 1264.53051
[31] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer, 1972. · Zbl 0254.22005
[32] R. A. Struble, Metrics in locally compact groups, Compos. Math. 28 (1974), 217-222. · Zbl 0288.22010
[33] F. Voigtlaender, Embeddings of decomposition spaces, Mem. Amer. Math. Soc., to appear. · Zbl 1390.42043
[34] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Sprin-ger, 1983. · Zbl 0516.58001
[35] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Univ. Press, 2000. · Zbl 0951.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.