×

Algebraic K-theory of group rings and the cyclotomic trace map. (English) Zbl 1357.19002

This article establishes a number of important results related to the Farrell-Jones conjectures. This review will only address the less technical ones and not mention the precise strong statements about the assembly map for topological Hochschild homology, nor the precise form of what the authors call the rationalized Farrell-Jones assembly map. Let us only say that this map goes from a direct sum taken over the set of conjugacy classes of finite cyclic subgroups of a group \(G\) to \(K_n(\mathbb Z [G]) \otimes_{\mathbb Z} \mathbb Q\). When restricted to the factor corresponding to the trivial subgroup one gets back the rationalized classical assembly map
\[ \bigoplus_{s+t=n} H_s(BG; \mathbb Q) \otimes_{\mathbb Q} \left( K_t(\mathbb Z) \otimes_{\mathbb Z} \mathbb Q \right) \rightarrow K_n(\mathbb Z [G]) \otimes_{\mathbb Z} \mathbb Q \]
The main theorem about the (generalized) assembly map is its injectivity for any group satisfying two conditions. The first condition is a purely group theoretical one, requiring that all integral homology groups of the centralizer of any finite cyclic subgroup of \(G\) is finitely generated. The second condition is a conjecturally true statement about the \(\mathbb Q\)-injectivity of a map in \(K\)-theory depending only on the order of finite subgroups of \(G\), and is referred to as a weak version of the Leopoldt-Schneider conjecture.
This conjecture is known to be true for the trivial subgroup (the case of order \(1\)), a direct corollary is thus the M. Bökstedt et al. Theorem [Invent. Math. 111, No. 3, 465–539 (1993; Zbl 0804.55004)], establishing the injectivity of the rationalized classical assembly map for any group \(G\) with finitely generated integral homology groups. The weak Leopoldt-Schneider conjecture is also true in small degrees (on \(K_0\) and \(K_1\)), from which the authors deduce cool consequences about the Whitehead group of many groups (satisfying very mild finiteness homological conditions), namely that rationally \(Wh(G)\) is assembled from all Whitehead groups \(Wh(H)\) where \(H\) is a finite subgroup of \(G\).
The introduction is very well written and gives an almost ten page long account on the results of this paper and related work. It continues with a thorough discussion of the two conditions we have mentioned above, in particular to which groups they are known to apply. An extra section presents the strategy of the proof and contains in particular a “roadmap” summarizing the main steps in the proof.

MSC:

19D55 \(K\)-theory and homology; cyclic homology and cohomology
19D50 Computations of higher \(K\)-theory of rings
19B28 \(K_1\) of group rings and orders
55P91 Equivariant homotopy theory in algebraic topology
55P42 Stable homotopy theory, spectra

Citations:

Zbl 0804.55004

References:

[1] Adams, J. F., Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture, (Algebraic Topology. Algebraic Topology, Aarhus, 1982. Algebraic Topology. Algebraic Topology, Aarhus, 1982, Lecture Notes in Mathematics, vol. 1051 (1984), Springer: Springer Berlin), 483-532, MR764596 · Zbl 0553.55010
[2] Bartels, A.; Echterhoff, S.; Lück, W., Inheritance of isomorphism conjectures under colimits, \((K\)-Theory and Noncommutative Geometry. \(K\)-Theory and Noncommutative Geometry, EMS Ser. Congr. Rep. (2008), Eur. Math. Soc.: Eur. Math. Soc. Zürich), 41-70, MR2513332 · Zbl 1159.19005
[3] Bartels, A.; Farrell, F. T.; Lück, W., The Farrell-Jones conjecture for cocompact lattices in virtually connected Lie groups, J. Amer. Math. Soc., 27, 2, 339-388 (2014), MR3164984 · Zbl 1307.18012
[4] Bartels, A.; Lück, W., Isomorphism conjecture for homotopy \(K\)-theory and groups acting on trees, J. Pure Appl. Algebra, 205, 3, 660-696 (2006), MR2210223 · Zbl 1093.19002
[5] Bartels, A.; Lück, W., Induction theorems and isomorphism conjectures for \(K\)- and \(L\)-theory, Forum Math., 19, 3, 379-406 (2007), MR2328114 · Zbl 1141.19001
[6] Bartels, A.; Lück, W., On crossed product rings with twisted involutions, their module categories and \(L\)-theory, (Cohomology of Groups and Algebraic \(K\)-Theory. Cohomology of Groups and Algebraic \(K\)-Theory, Adv. Lectures Math., vol. 12 (2010), Int. Press: Int. Press Somerville, MA), 1-54, MR2655174 · Zbl 1205.19006
[7] Bartels, A.; Lück, W., The Borel conjecture for hyperbolic and CAT(0)-groups, Ann. of Math. (2), 175, 2, 631-689 (2012), MR2993750 · Zbl 1256.57021
[8] Bartels, A.; Lück, W.; Reich, H., The \(K\)-theoretic Farrell-Jones conjecture for hyperbolic groups, Invent. Math., 172, 1, 29-70 (2008), MR2385666 · Zbl 1143.19003
[9] Bartels, A.; Lück, W.; Reich, H., On the Farrell-Jones conjecture and its applications, J. Topol., 1, 1, 57-86 (2008), MR2365652 · Zbl 1141.19002
[10] Bartels, A.; Lück, W.; Reich, H.; Rüping, H., \(K\)- and \(L\)-theory of group rings over \(G L_n(Z)\), Publ. Math. Inst. Hautes Études Sci., 119, 97-125 (2014), MR3210177 · Zbl 1300.19001
[11] Bartels, A.; Reich, H., On the Farrell-Jones conjecture for higher algebraic \(K\)-theory, J. Amer. Math. Soc., 18, 3, 501-545 (2005), MR2138135 · Zbl 1073.19002
[12] Bartels, A.; Reich, H., Coefficients for the Farrell-Jones conjecture, Adv. Math., 209, 1, 337-362 (2007), MR2294225 · Zbl 1161.19003
[13] Bartels, A.; Rosenthal, D., On the \(K\)-theory of groups with finite asymptotic dimension, J. Reine Angew. Math., 612, 35-57 (2007), MR2364073 · Zbl 1144.19001
[14] Bass, H.; Milnor, J.; Serre, J.-P., Solution of the congruence subgroup problem for \(SL_n(n \geq 3)\) and \(Sp_{2 n}(n \geq 2)\), Inst. Hautes Études Sci. Publ. Math., 33, 59-137 (1967), MR0244257 · Zbl 0174.05203
[15] Blumberg, A. J., Continuous functors as a model for the equivariant stable homotopy category, Algebr. Geom. Topol., 6, 2257-2295 (2006), MR2286026 · Zbl 1186.55002
[17] Bökstedt, M.; Hsiang, W. C.; Madsen, I., The cyclotomic trace and algebraic \(K\)-theory of spaces, Invent. Math., 111, 3, 465-539 (1993), MR1202133 · Zbl 0804.55004
[18] Borceux, F., Handbook of Categorical Algebra. 1, Encyclopedia of Mathematics and its Applications, vol. 50 (1994), Cambridge University Press: Cambridge University Press Cambridge, MR1291599 · Zbl 0803.18001
[19] Borel, A., Stable real cohomology of arithmetic groups, Ann. Sci. Éc. Norm. Supér. (4), 7, 235-272 (1974), MR0387496 · Zbl 0316.57026
[20] Bousfield, A. K., The localization of spectra with respect to homology, Topology, 18, 4, 257-281 (1979), MR551009 · Zbl 0417.55007
[21] Bousfield, A. K.; Kan, D. M., Homotopy Limits, Completions and Localizations, Lecture Notes in Mathematics, vol. 304 (1972), Springer: Springer Berlin-New York, MR0365573 · Zbl 0259.55004
[22] Brumer, A., On the units of algebraic number fields, Mathematika, 14, 121-124 (1967), MR0220694 · Zbl 0171.01105
[23] Carlsson, G.; Goldfarb, B., The integral \(K\)-theoretic Novikov conjecture for groups with finite asymptotic dimension, Invent. Math., 157, 2, 405-418 (2004), MR2076928 · Zbl 1071.19003
[24] Carlsson, G.; Pedersen, E. K., Controlled algebra and the Novikov conjectures for \(K\)- and \(L\)-theory, Topology, 34, 3, 731-758 (1995), MR1341817 · Zbl 0838.55004
[25] Charney, R. M., \(K\)-theory of ideals, (Current Trends in Algebraic Topology, Part 1. Current Trends in Algebraic Topology, Part 1, London, Ont., 1981. Current Trends in Algebraic Topology, Part 1. Current Trends in Algebraic Topology, Part 1, London, Ont., 1981, CMS Conf. Proc., vol. 2 (1982), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 3-18, MR686107 · Zbl 0545.18005
[26] Davis, J. F.; Lück, W., Spaces over a category and assembly maps in isomorphism conjectures in \(K\)- and \(L\)-theory, \(K\)-Theory, 15, 3, 201-252 (1998), MR1659969 · Zbl 0921.19003
[27] tom Dieck, T., Transformation Groups, de Gruyter Studies in Mathematics, vol. 8 (1987), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin, MR889050 · Zbl 0611.57002
[28] tom Dieck, T., Algebraic Topology, EMS Textbooks in Mathematics (2008), European Mathematical Society: European Mathematical Society Zürich, MR2456045 · Zbl 1156.55001
[29] Drinfeld, V., On the notion of geometric realization, Mosc. Math. J., 4, 3, 619-626 (2004), 782, MR2119142 · Zbl 1073.55010
[30] Dundas, B. I.; Goodwillie, T. G.; McCarthy, R., The Local Structure of Algebraic K-theory, Algebra and Applications, vol. 18 (2013), Springer: Springer London, MR3013261 · Zbl 1272.55002
[31] Dundas, B. I.; McCarthy, R., Topological Hochschild homology of ring functors and exact categories, J. Pure Appl. Algebra, 109, 3, 231-294 (1996), MR1388700 · Zbl 0856.19004
[32] Dwyer, W. G.; Friedlander, E. M., Algebraic and étale \(K\)-theory, Trans. Amer. Math. Soc., 292, 1, 247-280 (1985), MR805962 · Zbl 0581.14012
[33] Dwyer, W. G.; Hopkins, M. J.; Kan, D. M., The homotopy theory of cyclic sets, Trans. Amer. Math. Soc., 291, 1, 281-289 (1985), MR797060 · Zbl 0594.55020
[34] Farrell, F. T.; Hsiang, W. C., The topological-Euclidean space form problem, Invent. Math., 45, 2, 181-192 (1978), MR0482771 · Zbl 0422.57019
[35] Farrell, F. T.; Hsiang, W. C., On Novikov’s conjecture for nonpositively curved manifolds. I, Ann. of Math. (2), 113, 1, 199-209 (1981), MR604047 · Zbl 0461.57016
[36] Farrell, F. T.; Hsiang, W. C., The Whitehead group of poly-(finite or cyclic) groups, J. Lond. Math. Soc. (2), 24, 2, 308-324 (1981), MR631942 · Zbl 0514.57002
[37] Farrell, F. T.; Jones, L. E., \(K\)-theory and dynamics. I, Ann. of Math. (2), 124, 3, 531-569 (1986), MR866708 · Zbl 0653.58035
[38] Farrell, F. T.; Jones, L. E., A topological analogue of Mostow’s rigidity theorem, J. Amer. Math. Soc., 2, 2, 257-370 (1989), MR973309 · Zbl 0696.57018
[39] Farrell, F. T.; Jones, L. E., Isomorphism conjectures in algebraic \(K\)-theory, J. Amer. Math. Soc., 6, 2, 249-297 (1993), MR1179537 · Zbl 0798.57018
[40] Farrell, F. T.; Jones, L. E., The lower algebraic \(K\)-theory of virtually infinite cyclic groups, \(K\)-Theory, 9, 1, 13-30 (1995), MR1340838 · Zbl 0829.19002
[41] Farrell, F. T.; Wu, X., The Farrell-Jones conjecture for the solvable Baumslag-Solitar groups, Math. Ann., 359, 3-4, 839-862 (2014), MR3231018 · Zbl 1354.19002
[42] Geisser, T., The cyclotomic trace map and values of zeta functions, (Algebra and Number Theory (2005), Hindustan Book Agency: Hindustan Book Agency Delhi), 211-225, MR2193354 · Zbl 1084.19001
[43] Geoghegan, R., Topological Methods in Group Theory, Graduate Texts in Mathematics, vol. 243 (2008), Springer: Springer New York, MR2365352 · Zbl 1141.57001
[44] Geoghegan, R.; Varisco, M., On Thompson’s group \(T\) and algebraic \(K\)-theory, in: Geometric and Cohomological Group Theory, in: London Mathematical Society Lecture Note Series, Cambridge University Press, to appear, available at · Zbl 1430.19003
[45] Goerss, P. G.; Jardine, J. F., Simplicial Homotopy Theory, Modern Birkhäuser Classics (2009), Birkhäuser: Birkhäuser Basel, MR2840650 · Zbl 0914.55004
[46] Goodwillie, T. G., Cyclic homology, derivations, and the free loopspace, Topology, 24, 2, 187-215 (1985), MR793184 · Zbl 0569.16021
[47] Grayson, D. R., Weight filtrations via commuting automorphisms, \(K\)-Theory, 9, 2, 139-172 (1995), MR1340843 · Zbl 0826.19003
[48] Grunewald, J., The behavior of Nil-groups under localization and the relative assembly map, Topology, 47, 3, 160-202 (2008), MR2414359 · Zbl 1172.19002
[49] Hambleton, I.; Pedersen, E. K., Identifying assembly maps in \(K\)- and \(L\)-theory, Math. Ann., 328, 1-2, 27-57 (2004), MR2030369 · Zbl 1051.19002
[50] Hesselholt, L., \(K\)-theory of truncated polynomial algebras, (Handbook of \(K\)-Theory, vol. 1 (2005), Springer: Springer Berlin), 71-110, MR2181821 · Zbl 1102.19002
[51] Hesselholt, L.; Madsen, I., On the \(K\)-theory of finite algebras over Witt vectors of perfect fields, Topology, 36, 1, 29-101 (1997), MR1410465 · Zbl 0866.55002
[52] Hesselholt, L.; Madsen, I., On the \(K\)-theory of local fields, Ann. of Math. (2), 158, 1, 1-113 (2003), MR1998478 · Zbl 1033.19002
[53] Hill, M. A.; Hopkins, M. J.; Ravenel, D. C., On the nonexistence of elements of Kervaire invariant one, Ann. of Math. (2), 184, 1, 1-262 (2016), MR3505179 · Zbl 1366.55007
[54] Hirschhorn, P. S., Model Categories and Their Localizations, Mathematical Surveys and Monographs, vol. 99 (2003), American Mathematical Society: American Mathematical Society Providence, RI, MR1944041 · Zbl 1017.55001
[55] Hsiang, W. C., Geometric applications of algebraic \(K\)-theory, (Proceedings of the International Congress of Mathematicians. Proceedings of the International Congress of Mathematicians, Warsaw, 1983 (1984), PWN: PWN Warsaw), 99-118, MR804679 · Zbl 0562.57001
[56] Jones, J. D.S., Cyclic homology and equivariant homology, Invent. Math., 87, 2, 403-423 (1987), MR870737 · Zbl 0644.55005
[57] Kammeyer, H.; Lück, W.; Rüping, H., The Farrell-Jones conjecture for arbitrary lattices in virtually connected Lie groups, Geom. Topol., 20, 3, 1275-1287 (2016), MR3523058 · Zbl 1346.18019
[58] Kasprowski, D., On the \(K\)-theory of groups with finite decomposition complexity, Proc. Lond. Math. Soc. (3), 110, 3, 565-592 (2015), MR3342098 · Zbl 1349.19001
[59] Kelly, G. M., Basic concepts of enriched category theory, Repr. Theory Appl. Categ., 10 (2005), vi+137, reprint of the 1982 original, Cambridge Univ. Press, MR2177301 · Zbl 1086.18001
[60] Kolster, M., Remarks on étale \(K\)-theory and Leopoldt’s conjecture, (Séminaire de Théorie des Nombres. Séminaire de Théorie des Nombres, Paris, 1991-1992. Séminaire de Théorie des Nombres. Séminaire de Théorie des Nombres, Paris, 1991-1992, Progr. Math., vol. 116 (1993), Birkhäuser: Birkhäuser Boston, MA), 37-62, MR1300881 · Zbl 1043.19500
[61] Levine, M., Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom., 10, 2, 299-363 (2001), MR1811558 · Zbl 1077.14509
[62] Levine, M., The homotopy coniveau tower, J. Topol., 1, 1, 217-267 (2008), MR2365658 · Zbl 1154.14005
[63] Lewis, L. G., When is the natural map \(X \longrightarrow \Omega \Sigma X\) a cofibration?, Trans. Amer. Math. Soc., 273, 1, 147-155 (1982), MR664034 · Zbl 0508.55010
[64] Lewis, L. G.; May, J. P.; Steinberger, M., Equivariant Stable Homotopy Theory, Lecture Notes in Mathematics, vol. 1213 (1986), Springer: Springer Berlin, with contributions by J.E. McClure, MR866482 · Zbl 0611.55001
[65] Loday, J.-L., \(K\)-théorie algébrique et représentations de groupes, Ann. Sci. Éc. Norm. Supér. (4), 9, 3, 309-377 (1976), MR0447373 · Zbl 0362.18014
[66] Lück, W., Transformation Groups and Algebraic \(K\)-Theory, Lecture Notes in Mathematics, vol. 1408 (1989), Springer: Springer Berlin, MR1027600 · Zbl 0679.57022
[67] Lück, W., The type of the classifying space for a family of subgroups, J. Pure Appl. Algebra, 149, 2, 177-203 (2000), MR1757730 · Zbl 0955.55009
[68] Lück, W., Chern characters for proper equivariant homology theories and applications to \(K\)- and \(L\)-theory, J. Reine Angew. Math., 543, 193-234 (2002), MR1887884 · Zbl 0987.55008
[69] Lück, W., Survey on classifying spaces for families of subgroups, (Infinite Groups: Geometric, Combinatorial and Dynamical Aspects. Infinite Groups: Geometric, Combinatorial and Dynamical Aspects, Progr. Math., vol. 248 (2005), Birkhäuser: Birkhäuser Basel), 269-322, MR2195456 · Zbl 1117.55013
[70] Lück, W., \(K\)- and \(L\)-theory of group rings, (Proceedings of the International Congress of Mathematicians, vol. II (2010), Hindustan Book Agency: Hindustan Book Agency New Delhi), 1071-1098, MR2827832 · Zbl 1231.18008
[71] Lück, W.; Reich, H., The Baum-Connes and the Farrell-Jones conjectures in \(K\)- and \(L\)-theory, (Handbook of \(K\)-Theory, vol. 2 (2005), Springer: Springer Berlin), 703-842, MR2181833 · Zbl 1120.19001
[72] Lück, W.; Reich, H., Detecting \(K\)-theory by cyclic homology, Proc. Lond. Math. Soc. (3), 93, 3, 593-634 (2006), MR2266961 · Zbl 1116.19002
[73] Lück, W.; Reich, H.; Rognes, J.; Varisco, M., Assembly maps for topological cyclic homology of group algebras (2016), preprint
[74] Lück, W.; Reich, H.; Varisco, M., Commuting homotopy limits and smash products, \(K\)-Theory, 30, 2, 137-165 (2003), MR2064237 · Zbl 1053.55004
[75] Lück, W.; Steimle, W., Splitting the relative assembly map, Nil-terms and involutions, Ann. K-Theory, 1, 4, 339-377 (2016), MR3536432 · Zbl 1409.18014
[76] Lydakis, M., Simplicial functors and stable homotopy theory (1998), preprint, available at
[77] Mac Lane, S., Categories for the Working Mathematician, Graduate Texts in Mathematics, vol. 5 (1998), Springer: Springer New York, MR1712872 · Zbl 0906.18001
[78] Madsen, I., Algebraic \(K\)-theory and traces, (Current Developments in Mathematics. Current Developments in Mathematics, 1995, Cambridge, MA (1994), Int. Press: Int. Press Cambridge, MA), 191-321, MR1474979
[79] Mandell, M. A.; May, J. P., Equivariant orthogonal spectra and \(S\)-modules, Mem. Amer. Math. Soc., 159, 755 (2002), x+108, MR1922205 · Zbl 1025.55002
[80] Mandell, M. A.; May, J. P.; Schwede, S.; Shipley, B., Model categories of diagram spectra, Proc. Lond. Math. Soc. (3), 82, 2, 441-512 (2001), MR1806878 · Zbl 1017.55004
[81] May, J. P., The Geometry of Iterated Loop Spaces, Lecture Notes in Mathematics, vol. 271 (1972), Springer: Springer Berlin-New York, MR0420610 · Zbl 0244.55009
[82] McCarthy, R., Relative algebraic \(K\)-theory and topological cyclic homology, Acta Math., 179, 2, 197-222 (1997), MR1607555 · Zbl 0913.19001
[83] Milne, J. S., Étale Cohomology, Princeton Mathematical Series, vol. 33 (1980), Princeton University Press: Princeton University Press Princeton, N.J., MR559531 · Zbl 0433.14012
[84] Milne, J. S., Arithmetic Duality Theorems (2006), BookSurge, LLC: BookSurge, LLC Charleston, SC, MR2261462 · Zbl 0613.14019
[85] Mislin, G., Classifying spaces for proper actions of mapping class groups, Münster J. Math., 3, 263-272 (2010), MR2775365 · Zbl 1223.57017
[86] Neukirch, J.; Schmidt, A.; Wingberg, K., Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, vol. 323 (2008), Springer: Springer Berlin, MR2392026 · Zbl 1136.11001
[87] Oliver, R., Whitehead Groups of Finite Groups, London Mathematical Society Lecture Note Series, vol. 132 (1988), Cambridge University Press: Cambridge University Press Cambridge, MR933091 · Zbl 0636.18001
[88] Østvær, P. A., Étale descent for real number fields, Topology, 42, 1, 197-225 (2003), MR1928650 · Zbl 1023.19003
[89] Panin, I., The Hurewicz theorem and \(K\)-theory of complete discrete valuation rings, Izv. Akad. Nauk SSSR Ser. Mat., 50, 4, 763-775 (1986), (in Russian), MR864175 · Zbl 0614.18009
[90] Patronas, D., The Artin defect in algebraic \(K\)-theory (2014), Freie Universität Berlin, PhD thesis
[91] Quillen, D., On the cohomology and \(K\)-theory of the general linear groups over a finite field, Ann. of Math. (2), 96, 552-586 (1972), MR0315016 · Zbl 0249.18022
[92] Quillen, D., Higher algebraic \(K\)-theory. I, (Algebraic \(K\)-Theory, I: Higher \(K\)-Theories, Proc. Conf., Battelle Memorial Inst.. Algebraic \(K\)-Theory, I: Higher \(K\)-Theories, Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972. Algebraic \(K\)-Theory, I: Higher \(K\)-Theories, Proc. Conf., Battelle Memorial Inst.. Algebraic \(K\)-Theory, I: Higher \(K\)-Theories, Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972, Lecture Notes in Mathematics, vol. 341 (1973), Springer: Springer Berlin), 85-147, MR0338129 · Zbl 0292.18004
[93] Quillen, D., Finite generation of the groups \(K_i\) of rings of algebraic integers, (Algebraic \(K\)-Theory, I: Higher \(K\)-Theories, Proc. Conf., Battelle Memorial Inst.. Algebraic \(K\)-Theory, I: Higher \(K\)-Theories, Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972. Algebraic \(K\)-Theory, I: Higher \(K\)-Theories, Proc. Conf., Battelle Memorial Inst.. Algebraic \(K\)-Theory, I: Higher \(K\)-Theories, Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972, Lecture Notes in Mathematics, vol. 341 (1973), Springer: Springer Berlin), 179-198, MR0349812 · Zbl 0355.18018
[94] Ramras, D. A.; Tessera, R.; Yu, G., Finite decomposition complexity and the integral Novikov conjecture for higher algebraic \(K\)-theory, J. Reine Angew. Math., 694, 129-178 (2014), MR3259041 · Zbl 1306.18005
[95] Reich, H.; Varisco, M., On the Adams isomorphism for equivariant orthogonal spectra, Algebr. Geom. Topol., 16, 3, 1493-1566 (2016), MR3523048 · Zbl 1350.55015
[96] Reiner, I., Maximal Orders, London Mathematical Society Monographs, vol. 5 (1975), Academic Press: Academic Press London-New York, MR0393100 · Zbl 0305.16001
[97] Rognes, J., Algebraic \(K\)-theory of the two-adic integers, J. Pure Appl. Algebra, 134, 3, 287-326 (1999), MR1663391 · Zbl 0929.19004
[98] Rognes, J., Two-primary algebraic \(K\)-theory of pointed spaces, Topology, 41, 5, 873-926 (2002), MR1923990 · Zbl 1009.19001
[99] Rognes, J.; Weibel, C. A., Étale descent for two-primary algebraic \(K\)-theory of totally imaginary number fields, \(K\)-Theory, 16, 2, 101-104 (1999), MR1671258 · Zbl 0919.19003
[100] Rognes, J.; Weibel, C. A., Two-primary algebraic \(K\)-theory of rings of integers in number fields, J. Amer. Math. Soc., 13, 1, 1-54 (2000), Appendix A by M. Kolster, MR1697095 · Zbl 0934.19001
[101] Rosenthal, D., Splitting with continuous control in algebraic \(K\)-theory, \(K\)-Theory, 32, 2, 139-166 (2004), MR2083578 · Zbl 1068.19008
[102] Roushon, S. K., The Farrell-Jones isomorphism conjecture for 3-manifold groups, J. K-Theory, 1, 1, 49-82 (2008), MR2424566 · Zbl 1160.57018
[103] Rüping, H., The Farrell-Jones conjecture for \(S\)-arithmetic groups, J. Topol., 9, 1, 51-90 (2016), MR3465840 · Zbl 1365.18010
[104] Schneider, P., Über gewisse Galoiscohomologiegruppen, Math. Z., 168, 2, 181-205 (1979), MR544704 · Zbl 0421.12024
[105] Segal, G. B., Categories and cohomology theories, Topology, 13, 293-312 (1974), MR0353298 · Zbl 0284.55016
[106] Shipley, B., Symmetric spectra and topological Hochschild homology, \(K\)-Theory, 19, 2, 155-183 (2000), MR1740756 · Zbl 0938.55017
[107] Soulé, C., \(K\)-théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math., 55, 3, 251-295 (1979), MR553999 · Zbl 0437.12008
[108] Soulé, C., On higher \(p\)-adic regulators, (Algebraic \(K\)-Theory, Proc. Conf., Northwestern Univ.. Algebraic \(K\)-Theory, Proc. Conf., Northwestern Univ., Evanston, Ill., 1980. Algebraic \(K\)-Theory, Proc. Conf., Northwestern Univ.. Algebraic \(K\)-Theory, Proc. Conf., Northwestern Univ., Evanston, Ill., 1980, Lecture Notes in Mathematics, vol. 854 (1981), Springer: Springer Berlin-New York), 372-401, MR618313 · Zbl 0488.12008
[109] Soulé, C., Éléments cyclotomiques en \(K\)-théorie, Journées arithmétiques de Besançon. Journées arithmétiques de Besançon, Besançon, 1985. Journées arithmétiques de Besançon. Journées arithmétiques de Besançon, Besançon, 1985, Astérisque, 147-148, 225-257 (1987), 344, MR891430 · Zbl 0632.12014
[110] Strickland, N. P., The category of CGWH spaces, preprint, August 19, 2009, available at
[111] Suslin, A., On the Grayson spectral sequence, Tr. Mat. Inst. Steklova. Tr. Mat. Inst. Steklova, Proc. Steklov Inst. Math., 2 (241), Teor. Chisel, Algebra i Algebr. Geom., 202-237 (2003), MR2024054 · Zbl 1084.14025
[112] Suslin, A.; Voevodsky, V., Bloch-Kato conjecture and motivic cohomology with finite coefficients, (The Arithmetic and Geometry of Algebraic Cycles. The Arithmetic and Geometry of Algebraic Cycles, Banff, AB, 1998. The Arithmetic and Geometry of Algebraic Cycles. The Arithmetic and Geometry of Algebraic Cycles, Banff, AB, 1998, NATO Sci. Ser. C Math. Phys. Sci., vol. 548 (2000), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 117-189, MR1744945 · Zbl 1005.19001
[113] Swan, R. G., Induced representations and projective modules, Ann. of Math. (2), 71, 552-578 (1960), MR0138688 · Zbl 0104.25102
[114] Thomason, R. W., Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc., 85, 1, 91-109 (1979), MR510404 · Zbl 0392.18001
[115] Voevodsky, V., A possible new approach to the motivic spectral sequence for algebraic \(K\)-theory, (Recent Progress in Homotopy Theory. Recent Progress in Homotopy Theory, Baltimore, MD, 2000. Recent Progress in Homotopy Theory. Recent Progress in Homotopy Theory, Baltimore, MD, 2000, Contemp. Math., vol. 293 (2002), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 371-379, MR1890744 · Zbl 1009.19003
[116] Voevodsky, V., Motivic cohomology with \(Z / 2\)-coefficients, Publ. Math. Inst. Hautes Études Sci., 98, 59-104 (2003), MR2031199 · Zbl 1057.14028
[117] Voevodsky, V., On motivic cohomology with \(Z / l\)-coefficients, Ann. of Math. (2), 174, 1, 401-438 (2011), MR2811603 · Zbl 1236.14026
[118] Wagoner, J. B., Continuous cohomology and \(p\)-adic \(K\)-theory, (Algebraic K-Theory, Proc. Conf., Northwestern Univ.. Algebraic K-Theory, Proc. Conf., Northwestern Univ., Evanston, Ill., 1976. Algebraic K-Theory, Proc. Conf., Northwestern Univ.. Algebraic K-Theory, Proc. Conf., Northwestern Univ., Evanston, Ill., 1976, Lecture Notes in Mathematics, vol. 551 (1976), Springer: Springer Berlin), 241-248, MR0498502 · Zbl 0355.18016
[119] Waldhausen, F., Algebraic \(K\)-theory of topological spaces. I, (Algebraic and Geometric Topology. Algebraic and Geometric Topology, Stanford Univ., 1976. Algebraic and Geometric Topology. Algebraic and Geometric Topology, Stanford Univ., 1976, Proc. Sympos. Pure Math., vol. XXXII (1978), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 35-60, MR520492 · Zbl 0414.18010
[120] Waldhausen, F., Algebraic \(K\)-theory of topological spaces. II, (Algebraic Topology. Algebraic Topology, Univ. Aarhus, 1978. Algebraic Topology. Algebraic Topology, Univ. Aarhus, 1978, Lecture Notes in Mathematics, vol. 763 (1979), Springer: Springer Berlin), 356-394, MR561230 · Zbl 0431.57004
[121] Washington, L. C., Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, vol. 83 (1997), Springer: Springer New York, MR1421575 · Zbl 0966.11047
[122] Wegner, C., The \(K\)-theoretic Farrell-Jones conjecture for CAT(0)-groups, Proc. Amer. Math. Soc., 140, 3, 779-793 (2012), MR2869063 · Zbl 1240.19003
[123] Wegner, C., The Farrell-Jones conjecture for virtually solvable groups, J. Topol., 8, 4, 975-1016 (2015), MR3431666 · Zbl 1338.19002
[124] Weibel, C. A., Algebraic \(K\)-theory of rings of integers in local and global fields, (Handbook of \(K\)-Theory, vol. 1 (2005), Springer: Springer Berlin), 139-190, MR2181823 · Zbl 1097.19003
[125] Weibel, C. A., The \(K\)-Book, Graduate Studies in Mathematics, vol. 145 (2013), American Mathematical Society: American Mathematical Society Providence, RI, MR3076731 · Zbl 1273.19001
[126] Weiss, M.; Williams, B., Assembly, (Novikov Conjectures, Index Theorems and Rigidity, vol. 2. Novikov Conjectures, Index Theorems and Rigidity, vol. 2, Oberwolfach, 1993. Novikov Conjectures, Index Theorems and Rigidity, vol. 2. Novikov Conjectures, Index Theorems and Rigidity, vol. 2, Oberwolfach, 1993, London Mathematical Society Lecture Note Series, vol. 227 (1995), Cambridge University Press: Cambridge University Press Cambridge), 332-352, MR1388318 · Zbl 0955.55004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.