×

Coarse structures on groups. (English) Zbl 1247.22003

The authors define the group-compact coarse structure on a topological Hausdorff group \(G\) as the coarse structure on \(G\) generated by the family \(C(G)\) of all compact subsets of \(G\), i.e., as the family \(\mathcal{E}_{C(G)}=\{E\subseteq G\times G: \exists K\in C(G)\) \(E\subset G(K\times K)\}\) where \(GA=\{(ga,gb):(a,b)\in A\) and \(g\in G\}\) for \(A\subseteq G\times G\). They develop the asymptotic dimension theory for these structures and obtain generalizations of some results familiar for discrete groups. A free topological group on a topological space \(X\) is a pair \((F,i)\) where \(F\) is a Hausdorff topological group and \(i:X\to F\) a continuous mapping satisfying the following universal property: For every Hausdorff topological group \(H\) and every continuous mapping \(f:X\to H\) there exists a unique continuous homomorphism \(h:F\to H\) such that \(f=h\circ i\). The asymptotic dimension of a free topological group on a non-empty topological space that is homeomorphic to a closed subspace of a product of metrizable spaces is proved to be \(1\).

MSC:

22A05 Structure of general topological groups
54H11 Topological groups (topological aspects)
54F45 Dimension theory in general topology
20F69 Asymptotic properties of groups

References:

[1] Abels, H., Reductive groups as metric spaces, (Groups: Topological, Combinatorial and Arithmetic Aspects. Groups: Topological, Combinatorial and Arithmetic Aspects, London Math. Soc. Lecture Note Ser., vol. 311 (2004), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 1-20, MR 2073343 (2005i:20073) · Zbl 1099.20021
[2] Antonyan, Sergey A., Proper actions on topological groups: applications to quotient spaces, Proc. Amer. Math. Soc., 138, 10, 3707-3716 (2010), MR 2661569 · Zbl 1226.22001
[3] Arhangelʼskii, Alexander; Tkachenko, Mikhail, Topological Groups and Related Structures, Atlantis Stud. Math., vol. 1 (2008), Atlantis Press: Atlantis Press Paris, MR 2433295 (2010i:22001) · Zbl 1323.22001
[4] Bell, G.; Dranishnikov, A., Asymptotic dimension, Topology Appl., 155, 12, 1265-1296 (2008), MR 2423966 (2009d:55001) · Zbl 1149.54017
[5] Carlsson, Gunnar; Goldfarb, Boris, On homological coherence of discrete groups, J. Algebra, 276, 2, 502-514 (2004), MR 2058455 (2005a:20078) · Zbl 1057.22013
[6] Dranishnikov, A.; Smith, J., Asymptotic dimension of discrete groups, Fund. Math., 189, 1, 27-34 (2006), MR 2213160 (2007h:20041) · Zbl 1100.20034
[7] Engelking, Ryszard, General Topology, Sigma Ser. Pure Math., vol. 6 (1989), Heldermann Verlag: Heldermann Verlag Berlin, translated from Polish by the author, MR 1039321 (91c:54001) · Zbl 0684.54001
[8] Grave, Bernd, Asymptotic dimension of coarse spaces, New York J. Math., 12, 249-256 (2006), (electronic), MR 2259239 (2007f:51023) · Zbl 1111.20038
[9] Ji, Lizhen, Asymptotic dimension and the integral \(K\)-theoretic Novikov conjecture for arithmetic groups, J. Differential Geom., 68, 3, 535-544 (2004), MR 2144540 (2006c:57025) · Zbl 1079.55012
[10] Lück, Wolfgang, Survey on classifying spaces for families of subgroups, (Infinite Groups: Geometric, Combinatorial and Dynamical Aspects. Infinite Groups: Geometric, Combinatorial and Dynamical Aspects, Progr. Math., vol. 248 (2005), Birkhäuser: Birkhäuser Basel), 269-322, MR 2195456 (2006m:55036) · Zbl 1117.55013
[11] Markov, Andreĭ Andreevič, On free topological groups, Dokl. Akad. Nauk SSSR, 31, 299-301 (1941) · Zbl 0027.09605
[12] Morris, Sidney A.; Thompson, H. B., Free topological groups with no small subgroups, Proc. Amer. Math. Soc., 46, 431-437 (1974), MR 0352318 (50 #4805) · Zbl 0294.22001
[13] Roe, John, Lectures on Coarse Geometry, Univ. Lecture Ser., vol. 31 (2003), American Mathematical Society: American Mathematical Society Providence, RI, MR 2007488 (2004g:53050) · Zbl 1042.53027
[14] Yu, Guoliang, The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. (2), 147, 2, 325-355 (1998), MR 1626745 (99k:57072) · Zbl 0911.19001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.