×

Score and Wald tests for the homogeneity of inverse Gaussian scale parameters based on computational approach test. (English) Zbl 07632228

Summary: In this study, we first obtain likelihood based Wald and score tests for testing the homogeneity of scale parameters of \(k\) independent inverse Gaussian populations. After that, we adapt these tests into the computational approach test procedure. We also provide theoretical investigation of these proposed tests in detail. The performances of the proposed tests are compared with the existing tests via extensive Monte Carlo simulations. The results of the simulation study reveal that the proposed tests are more powerful than the competitors in all settings, especially when sample sizes are unbalanced. Finally, a real data set is analyzed to illustrate the implementation of the proposed tests.

MSC:

62-XX Statistics

Software:

bootlib
Full Text: DOI

References:

[1] Alam, K.; Sudhir, P., Testing equality of scale parameters of two Weibull distributions in the presence of unequal shape parameters, Acta et Commentationes Universitatis Tartuensis de Mathematica, 19, 1, 11-26 (2015) · Zbl 1341.62058 · doi:10.12697/ACUTM.2015.19.02
[2] Bardsley, W. E., Note on the use of the inverse Gaussian distribution for wind energy applications, Journal of Applied Meteorology, 19, 9, 1126-30 (1980) · doi:10.1175/1520-0450(1980)019<1126:NOTUOT>2.0.CO;2
[3] Chang, M.; You, X.; Wen, M., Testing the homogeneity of inverse Gaussian scale-like parameters, Statistics & Probability Letters, 82, 10, 1755-60 (2012) · Zbl 1348.62050 · doi:10.1016/j.spl.2012.05.013
[4] Chhikara, R. S.; Folks, J. L., The inverse Gaussian distribution as a lifetime model, Technometrics, 19, 4, 461-68 (1977) · Zbl 0372.62076 · doi:10.1080/00401706.1977.10489586
[5] Chhikara, R. S.; Folks, J. L., The Inverse Gaussian distribution. (1989), New York (NY): Marcel Decker Inc., New York (NY) · Zbl 0701.62009
[6] Chhikara, R. S.; Guttman, I., Prediction limits for the inverse Gaussian distribution, Technometrics, 24, 4, 319-24 (1982) · Zbl 0494.62040 · doi:10.2307/1267827
[7] Davison, A. C.; Hinkley, D. V., Bootstrap methods and their application, 1 (1997), Cambridge: Cambridge university press, Cambridge · Zbl 0886.62001
[8] Doksum, K. A.; Hóyland, A., Models for variable-stress accelerated life testing experiments based on wener processes and the inverse gaussian distribution, Technometrics, 34, 1, 74-82 (1992) · Zbl 0763.62048 · doi:10.2307/1269554
[9] Durham, S. D.; Padgett, W. J., Cumulative damage models for system failure with application to carbon fibers and composites, Technometrics, 39, 1, 34-44 (1997) · Zbl 0869.62067 · doi:10.1080/00401706.1997.10485437
[10] Folks, J. L.; Chhikara, R. S., The inverse Gaussian distribution and its statistical application- a review, Journal of the Royal Statistical Society: Series B (Methodological), 40, 3, 263-89 (1978) · Zbl 0408.62011 · doi:10.1111/j.2517-6161.1978.tb01039.x
[11] Güven, G.; Gürer, Ö.; Şamkar, H.; Şenoğlu, B., A fiducial-based approach to the one-way ANOVA in the presence of nonnormality and heterogeneous error variances, Journal of Statistical Computation and Simulation, 89, 9, 1715-29 (2019) · Zbl 07193804 · doi:10.1080/00949655.2019.1593985
[12] Khatri, C. G., A characterization of the inverse Gaussian distribution, The Annals of Mathematical Statistics, 33, 2, 800-803 (1962) · Zbl 0109.13402 · doi:10.1214/aoms/1177704599
[13] Liu, X.; He, D., Testing homogeneity of inverse Gaussian scale parameters based on generalized likelihood ratio, Communications in Statistics - Simulation and Computation, 42, 2, 382-92 (2013) · Zbl 1327.62091 · doi:10.1080/03610918.2011.650257
[14] Mudholkar, G. S.; Natarajan, R., The inverse Gaussian models: Analogues of symmetry, skewness and kurtosis, Annals of the Institute of Statistical Mathematics, 54, 1, 138-54 (2002) · Zbl 0993.62003 · doi:10.1023/A:1016173923461
[15] Onar, A.; Padgett, W. J., Accelerated test models with the inverse Gaussian distribution, Journal of Statistical Planning and Inference, 89, 1-2, 119-33 (2000) · Zbl 0954.62121 · doi:10.1016/S0378-3758(99)00214-1
[16] Sadooghi-Alvandi, S. M.; Malekzadeh, A., A note on testing homogeneity of the scale parameters of several inverse Gaussian distributions, Statistics & Probability Letters, 83, 8, 1844-48 (2013) · Zbl 1417.62034 · doi:10.1016/j.spl.2013.04.019
[17] Şenoğlu, B.; Tiku, M. L., Analysis of variance in experimental design with nonnormal error distributions, Communications in Statistics - Theory and Methods, 30, 7, 1335-52 (2001) · Zbl 1008.62634 · doi:10.1081/STA-100104748
[18] Seshadri, V., The inverse Gaussian distribution: A case study in exponential families (1993), New York (NY): Oxford University Press., New York (NY)
[19] Seshadri, V., The inverse Gaussian distribution: Statistical theory and applications (1995), New York (NY): Springer., New York (NY) · Zbl 0942.62011
[20] Takagi, K.; Kumagai, S.; Matsunaga, I.; Kusaka, Y., Application of inverse Gaussian distribution to occupational exposure data, The Annals of Occupational Hygiene, 41, 5, 505-14 (1997) · doi:10.1016/S0003-4878(97)00015-X
[21] Tweedie, M. C., Statistical properties of inverse Gaussian distributions I, The Annals of Mathematical Statistics, 28, 2, 362-77 (1957) · Zbl 0086.35202 · doi:10.1214/aoms/1177706964
[22] Whitmore, G. A., The inverse Gaussian distribution as a model of hospital stay, Health Services Research, 10, 3, 297-302 (1975)
[23] Wong, A. C. M., Testing homogeneity of inverse Gaussian scale-like parameters: A saddlepoint approach, Statistical Papers, 57, 2, 319-27 (2016) · Zbl 1348.62055 · doi:10.1007/s00362-014-0653-z
[24] Yiğit, E.; Gökpinar, F., A simulation study on tests for one-way ANOVA under the unequal variance assumption, Communications Faculty of Sciences University of Ankara Series A1, 59, 15-34 (2010) · Zbl 1260.62061
[25] Zhang, G., A parametric bootstrap approach for one-way ANOVA under unequal variances with unbalanced data, Communications in Statistics - Simulation and Computation, 44, 4, 827-32 (2015) · Zbl 1325.62146 · doi:10.1080/03610918.2013.794288
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.