×

Parallelization strategies for density matrix renormalization group algorithms on shared-memory systems. (English) Zbl 1045.81575

Summary: Shared-memory (SMP) parallelization strategies for density matrix renormalization group (DMRG) algorithms enable the treatment of complex systems in solid state physics. We present two different approaches by which parallelization of the standard DMRG algorithm can be accomplished in an efficient way. The methods are illustrated with DMRG calculations of the two-dimensional Hubbard model and the one-dimensional Holstein-Hubbard model on contemporary SMP architectures. The parallelized code shows good scalability up to at least eight processors and allows us to solve problems which exceed the capability of sequential DMRG calculations.

MSC:

81V70 Many-body theory; quantum Hall effect
81-04 Software, source code, etc. for problems pertaining to quantum theory
82D20 Statistical mechanics of solids

References:

[1] White, S. R., Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett., 69, 2863-2866 (1992)
[2] White, S. R., Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B, 48, 10345-10356 (1993)
[3] (Peschel, I.; Wang, X.; Kaulke, M.; Hallberg, K., Density-Matrix Renormalization: A New Numerical Method in Physics. Density-Matrix Renormalization: A New Numerical Method in Physics, Lecture Notes in Physics, vol. 528 (1999), Springer: Springer Berlin) · Zbl 0919.00085
[4] Jeckelmann, E.; White, S. R., Density-matrix renormalization group study of the polaron problem in the Holstein model, Phys. Rev. B, 57, 6376-6385 (1998)
[5] Wellein, G.; Röder, H.; Fehske, H., Polarons and bipolarons in strongly interacting electron-phonon systems, Phys. Rev. B, 33, 9666-9675 (1996)
[6] Kanamori, J., Electron correlation and ferromagnetism of transition metals, Prog. Theor. Phys., 30, 275-289 (1963) · Zbl 0151.46703
[7] Studies of polaron motion. 1. The smallpPolaron, Ann. Phys. (N.Y.) 8 (1959) 343-389; Studies of polaron motion. 1. The smallpPolaron, Ann. Phys. (N.Y.) 8 (1959) 343-389 · Zbl 0173.30404
[8] (Baeriswyl, D.; etal., The Hubbard Model (1995), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht)
[9] Nishimoto, S.; Jeckelmann, E.; Gebhard, F.; Noack, R. M., Application of the density matrix renormalization group in momentum space, Phys. Rev. B, 65, 165114-165125 (2002)
[10] R.M. Noack, S.R. White, The density matrix renormalization group, In: I. Peschel, X. Wang, M. Kaulke, K. Hallberg (Eds.), Density-Matrix Renormalization: A New Numerical Method in Physics. Lectures of a Seminar and Workshop, held at the Max-Planck-Institut für Physik Komplexer Systeme, Dresden, Germany, August 24-to September 18th, 1998, Springer, Berlin, Heidelberg, New York, 1999 (Lecture Notes in Physics, vol. 528); R.M. Noack, S.R. White, The density matrix renormalization group, In: I. Peschel, X. Wang, M. Kaulke, K. Hallberg (Eds.), Density-Matrix Renormalization: A New Numerical Method in Physics. Lectures of a Seminar and Workshop, held at the Max-Planck-Institut für Physik Komplexer Systeme, Dresden, Germany, August 24-to September 18th, 1998, Springer, Berlin, Heidelberg, New York, 1999 (Lecture Notes in Physics, vol. 528) · Zbl 0984.81089
[11] Goedecker, S.; Hoisie, A., Performance Optimization of Numerically Intensive Codes (2001), SIAM: SIAM Philadelphia · Zbl 0985.68006
[12] Fehske, H.; Kampf, A. P.; Sekania, M.; Wellein, G., Nature of the Peierls- to Mott-insulator transition in 1D, Eur. Phys. J. B, 31, 11-16 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.