×

Aspects of holography in conical \(\mathrm{AdS}_3\). (English) Zbl 07693917

Summary: We study the Feynman propagator of free scalar fields in \(\mathrm{AdS}_3\) with a conical defect. In the bulk, the defect is represented by a massive particle; in the dual CFT, it is a heavy operator that creates a highly excited state. We construct the propagator by solving the bulk equation of motion in the defect geometry, summing over the modes of the field, and passing to the boundary. The result agrees with a calculation based on the method of images in \(\mathrm{AdS}_3/\mathbb{Z}_N\), where it is also a sum over geodesic lengths. On the boundary, the propagator becomes a semiclassical heavy-light four-point function. We interpret the field modes as double-twist primary states formed by excitations of the scalar on top of the defect, and we check that the correlator is crossing-symmetric by matching its singular behavior to that of the semiclassical Virasoro vacuum block. We also argue that long-range correlations in conical AdS are “thermally” suppressed as the defect becomes more massive by studying the critical behavior of a continuous phase transition in the correlator at the BTZ threshold. Finally, we apply our results to holographic entanglement entropy by exploiting an analogy between free scalars and replica twist fields.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
83C47 Methods of quantum field theory in general relativity and gravitational theory
83E05 Geometrodynamics and the holographic principle

References:

[1] Maldacena, JM, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231 (1998) · Zbl 0914.53047 · doi:10.4310/ATMP.1998.v2.n2.a1
[2] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[3] Gubser, SS; Klebanov, IR; Polyakov, AM, Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[4] S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-De Sitter Space, Commun. Math. Phys.87 (1983) 577 [INSPIRE].
[5] Witten, E., Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys., 2, 505 (1998) · Zbl 1057.81550 · doi:10.4310/ATMP.1998.v2.n3.a3
[6] S. Deser and R. Jackiw, Three-Dimensional Cosmological Gravity: Dynamics of Constant Curvature, Annals Phys.153 (1984) 405 [INSPIRE].
[7] Banados, M.; Teitelboim, C.; Zanelli, J., The Black hole in three-dimensional space-time, Phys. Rev. Lett., 69, 1849 (1992) · Zbl 0968.83514 · doi:10.1103/PhysRevLett.69.1849
[8] S.J. Avis, C.J. Isham and D. Storey, Quantum Field Theory in anti-De Sitter Space-Time, Phys. Rev. D18 (1978) 3565 [INSPIRE].
[9] Balasubramanian, V.; Kraus, P.; Lawrence, AE, Bulk versus boundary dynamics in anti-de Sitter space-time, Phys. Rev. D, 59 (1999) · doi:10.1103/PhysRevD.59.046003
[10] Freedman, DZ; Mathur, SD; Matusis, A.; Rastelli, L., Correlation functions in the CFT_d/AdS_d+1correspondence, Nucl. Phys. B, 546, 96 (1999) · Zbl 0944.81041 · doi:10.1016/S0550-3213(99)00053-X
[11] Berenstein, DE; Corrado, R.; Fischler, W.; Maldacena, JM, The Operator product expansion for Wilson loops and surfaces in the large N limit, Phys. Rev. D, 59 (1999) · doi:10.1103/PhysRevD.59.105023
[12] I.Y. Arefeva and A.A. Bagrov, Holographic dual of a conical defect, Teor. Mat. Fiz.182 (2014) 3 [INSPIRE].
[13] T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [NSF-ITP-98-082] [INSPIRE].
[14] Fitzpatrick, AL; Kaplan, J.; Walters, MT, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP, 08, 145 (2014) · doi:10.1007/JHEP08(2014)145
[15] Fitzpatrick, AL; Kaplan, J.; Walters, MT, Virasoro Conformal Blocks and Thermality from Classical Background Fields, JHEP, 11, 200 (2015) · Zbl 1388.83239 · doi:10.1007/JHEP11(2015)200
[16] Calabrese, P.; Cardy, J., Entanglement entropy and conformal field theory, J. Phys. A, 42 (2009) · Zbl 1179.81026 · doi:10.1088/1751-8113/42/50/504005
[17] Lewkowycz, A.; Maldacena, J., Generalized gravitational entropy, JHEP, 08, 090 (2013) · Zbl 1342.83185 · doi:10.1007/JHEP08(2013)090
[18] Benjamin, N.; Collier, S.; Maloney, A., Pure Gravity and Conical Defects, JHEP, 09, 034 (2020) · Zbl 1454.81178 · doi:10.1007/JHEP09(2020)034
[19] Martinec, EJ; McElgin, W., String theory on AdS orbifolds, JHEP, 04, 029 (2002) · doi:10.1088/1126-6708/2002/04/029
[20] Balasubramanian, V.; Kraus, P.; Shigemori, M., Massless black holes and black rings as effective geometries of the D1-D5 system, Class. Quant. Grav., 22, 4803 (2005) · Zbl 1078.83018 · doi:10.1088/0264-9381/22/22/010
[21] Lunin, O.; Mathur, SD, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B, 623, 342 (2002) · Zbl 1036.83503 · doi:10.1016/S0550-3213(01)00620-4
[22] Balasubramanian, V.; Chowdhury, BD; Czech, B.; de Boer, J., Entwinement and the emergence of spacetime, JHEP, 01, 048 (2015) · Zbl 1388.83633 · doi:10.1007/JHEP01(2015)048
[23] Giusto, S.; Mathur, SD; Saxena, A., 3-charge geometries and their CFT duals, Nucl. Phys. B, 710, 425 (2005) · Zbl 1115.81385 · doi:10.1016/j.nuclphysb.2005.01.009
[24] Giusto, S.; Lunin, O.; Mathur, SD; Turton, D., D1-D5-P microstates at the cap, JHEP, 02, 050 (2013) · doi:10.1007/JHEP02(2013)050
[25] Galliani, A.; Giusto, S.; Moscato, E.; Russo, R., Correlators at large c without information loss, JHEP, 09, 065 (2016) · Zbl 1390.83107 · doi:10.1007/JHEP09(2016)065
[26] Giusto, S.; Hughes, MRR; Russo, R., The Regge limit of AdS_3holographic correlators, JHEP, 11, 018 (2020) · Zbl 1456.83079 · doi:10.1007/JHEP11(2020)018
[27] M. Kulaxizi, G.S. Ng and A. Parnachev, Black Holes, Heavy States, Phase Shift and Anomalous Dimensions, SciPost Phys.6 (2019) 065 [arXiv:1812.03120] [INSPIRE].
[28] Karlsson, R.; Kulaxizi, M.; Parnachev, A.; Tadić, P., Black Holes and Conformal Regge Bootstrap, JHEP, 10, 046 (2019) · Zbl 1427.83040 · doi:10.1007/JHEP10(2019)046
[29] D.S. Ageev, I.Y. Aref’eva and M.D. Tikhanovskaya, (1 + 1)-Correlators and moving massive defects, Theor. Math. Phys.188 (2016) 1038 [arXiv:1512.03362] [INSPIRE].
[30] I.Y. Aref’eva, M.A. Khramtsov and M.D. Tikhanovskaya, Improved image method for a holographic description of conical defects, Theor. Math. Phys.189 (2016) 1660 [arXiv:1604.08905] [INSPIRE]. · Zbl 1361.81106
[31] I.Y. Aref’eva and M.A. Khramtsov, AdS/CFT prescription for angle-deficit space and winding geodesics, JHEP04 (2016) 121 [arXiv:1601.02008] [INSPIRE].
[32] Collier, S.; Gobeil, Y.; Maxfield, H.; Perlmutter, E., Quantum Regge Trajectories and the Virasoro Analytic Bootstrap, JHEP, 05, 212 (2019) · Zbl 1416.81143 · doi:10.1007/JHEP05(2019)212
[33] Klebanov, IR; Witten, E., AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B, 556, 89 (1999) · Zbl 0958.81134 · doi:10.1016/S0550-3213(99)00387-9
[34] P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys.144 (1982) 249 [INSPIRE]. · Zbl 0606.53044
[35] F.G. Friedlander, The Wave Equation on a Curved Spacetime, Cambridge University Press, New York (1975) [ISBN: 978-0521136365]. · Zbl 0316.53021
[36] F. Tricomi and A. Eedélyi, The Asymptotic Expansion of a Ratio of Gamma Functions, Pacific J. Math.1 (1951) 133. · Zbl 0043.29103
[37] Balasubramanian, V.; Ross, SF, Holographic particle detection, Phys. Rev. D, 61 (2000) · doi:10.1103/PhysRevD.61.044007
[38] W. Ballmann, M. Brin and K. Burns, On surfaces with no conjugate points, J. Diff. Geom.25 (1987) 249. · Zbl 0592.53041
[39] Berenstein, D.; Herzog, CP; Klebanov, IR, Baryon spectra and AdS/CFT correspondence, JHEP, 06, 047 (2002) · doi:10.1088/1126-6708/2002/06/047
[40] Calabrese, P.; Cardy, J.; Tonni, E., Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech., 1101, P01021 (2011) · Zbl 1456.81361
[41] G.H. Hardy, On two theorems of F. Carlson and S. Wigert, Acta Math.42 (1920) 327. · JFM 47.0305.03
[42] J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys.104 (1986) 207 [INSPIRE]. · Zbl 0584.53039
[43] Berenstein, D.; de Zoysa, RB, Operator product expansions and recoil, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.026019
[44] Berenstein, D.; Miller, A., Conformal perturbation theory, dimensional regularization, and AdS/CFT correspondence, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.086011
[45] Berenstein, D.; Simón, J., Localized states in global AdS space, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.046026
[46] Dolan, FA; Osborn, H., Conformal four point functions and the operator product expansion, Nucl. Phys. B, 599, 459 (2001) · Zbl 1097.81734 · doi:10.1016/S0550-3213(01)00013-X
[47] G.N. Watson, Asymptotic Expansions of Hypergeometric Functions, Trans. Cambridge Philos. Soc.22 (1918) 277.
[48] A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett.43 (1986) 730 [INSPIRE].
[49] Hijano, E.; Kraus, P.; Perlmutter, E.; Snively, R., Semiclassical Virasoro blocks from AdS_3gravity, JHEP, 12, 077 (2015) · Zbl 1388.81940
[50] Asplund, CT; Bernamonti, A.; Galli, F.; Hartman, T., Holographic Entanglement Entropy from 2d CFT: Heavy States and Local Quenches, JHEP, 02, 171 (2015) · Zbl 1388.83084 · doi:10.1007/JHEP02(2015)171
[51] R. Kubo, Statistical mechanical theory of irreversible processes. 1. General theory and simple applications in magnetic and conduction problems, J. Phys. Soc. Jap.12 (1957) 570 [INSPIRE].
[52] Berenstein, D.; Miller, A., Logarithmic enhancements in conformal perturbation theory and their real time interpretation, Int. J. Mod. Phys. A, 35, 2050184 (2020) · doi:10.1142/S0217751X20501845
[53] Berenstein, D.; Grabovsky, D., The Tortoise and the Hare: A Causality Puzzle in AdS/CFT, Class. Quant. Grav., 38 (2021) · Zbl 1480.83020 · doi:10.1088/1361-6382/abf1c7
[54] Banerjee, P.; Datta, S.; Sinha, R., Higher-point conformal blocks and entanglement entropy in heavy states, JHEP, 05, 127 (2016) · Zbl 1388.83171 · doi:10.1007/JHEP05(2016)127
[55] M. Duetsch and K.-H. Rehren, Generalized free fields and the AdS-CFT correspondence, Annales Henri Poincare4 (2003) 613 [math-ph/0209035] [INSPIRE]. · Zbl 1038.81051
[56] Ryu, S.; Takayanagi, T., Aspects of Holographic Entanglement Entropy, JHEP, 08, 045 (2006) · doi:10.1088/1126-6708/2006/08/045
[57] Fischetti, S.; Marolf, D., Complex Entangling Surfaces for AdS and Lifshitz Black Holes?, Class. Quant. Grav., 31 (2014) · Zbl 1305.83041 · doi:10.1088/0264-9381/31/21/214005
[58] Marolf, D.; Wang, S.; Wang, Z., Probing phase transitions of holographic entanglement entropy with fixed area states, JHEP, 12, 084 (2020) · Zbl 1457.83060 · doi:10.1007/JHEP12(2020)084
[59] Dong, X.; Wang, H., Enhanced corrections near holographic entanglement transitions: a chaotic case study, JHEP, 11, 007 (2020) · Zbl 1456.83074 · doi:10.1007/JHEP11(2020)007
[60] Dong, X.; McBride, S.; Weng, WW, Replica wormholes and holographic entanglement negativity, JHEP, 06, 094 (2022) · Zbl 1522.83164 · doi:10.1007/JHEP06(2022)094
[61] M. Headrick, Entanglement Entropy, talk at KITP Conference: Quantum Fields Beyond Perturbation Theory, (2014), https://online.kitp.ucsb.edu/online/qft_c14/headrick/.
[62] D. Berenstein and R. Mancilla, Aspects of thermal one-point functions and response functions in AdS Black holes, arXiv:2211.05144 [INSPIRE].
[63] Headrick, M.; Hubeny, VE; Lawrence, A.; Rangamani, M., Causality & holographic entanglement entropy, JHEP, 12, 162 (2014) · doi:10.1007/JHEP12(2014)162
[64] S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav.17 (2000) 4999 [gr-qc/0007021] [INSPIRE]. · Zbl 0972.83015
[65] Hernández-Cuenca, S.; Horowitz, GT; Treviño, G.; Wang, D., Boundary Causality Violating Metrics in Holography, Phys. Rev. Lett., 127, 8 (2021) · doi:10.1103/PhysRevLett.127.081603
[66] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, D. Zwillinger and V. Moll eds., Academic Press, New York, 8th edition (2015). · Zbl 1300.65001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.