×

Dynamic contact response of an elastic sphere on a piezoelectric half-space. (English) Zbl 1481.74578

Summary: This paper studies the dynamic contact response of a piezoelectric half-space under the action of an insulating elastic spherical punch. By means of the perturbation method, the dynamic contact pressure distribution is deduced. Utilizing Hankel transform, the dynamic contact displacement is obtained. Combining the elastic spherical punch oscillation and the piezoelectric half-space motion through contact-displacement boundary conditions, the resonant frequency shift of the elastic sphere is derived. Numerical calculations are given to discuss the influences of the material constant, piezoelectric effect, internal friction and static force on the dynamic contact pressure and resonance frequency shift. The results show that the difference between the dynamic and static contact pressures is small at the center of the contact region, while it is large near the edge of the contact region.

MSC:

74M15 Contact in solid mechanics
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Hirao, M.; Ogi, H., EMATs for Science and Industry: Noncontacting Ultrasonic Measurements (2003), Kluwer Academic Publishers: Kluwer Academic Publishers Boston
[2] Tian, J. Y.; Ogi, H.; Tada, T.; Hirao, M., Vibration analyses on electromagnetic- resonance-ultrasound microscopy (ERUM) for determining localized elastic constants of solids, J. Acoust. Soc. Am., 115, 630-636 (2004)
[3] Gladwell, G. M.L., The calculation of mechanical impedances relating to an indenter vibrating on the surface of a semi-infinite elastic body, J. Sound Vib., 8, 215-228 (1968)
[4] Pleasants, S.; Kane, D. M., Laser cleaning of alumina particles on glass and silica substrates: experiment and quasistatic model, J. Appl. Phys., 93, 8862-8866 (2003)
[5] Lamb, H., On the propagation of tremors over the surface of an elastic solid, Philos. Trans. R. Soc. Lond. Ser. A, 203, 1-42 (1904) · JFM 34.0859.02
[6] Nayak, P. R., Contact vibrations, J. Sound Vib., 22, 297-322 (1972) · Zbl 0236.70027
[7] Hess, D. P.; Soom, A., Normal vibrations and friction under harmonic loads: Part I - Hertzian contacts, J. Tribol., 113, 80-86 (1991)
[8] Wang, X. M.; Ke, L. L.; Wang, Y. S., Dynamic response of a coated half-plane with hysteretic damping under a harmonic hertz load, Acta Mech. Solid. Sin., 33, 449-463 (2019)
[9] Bycroft, G., Forced vibrations of a rigid circular plate on a semi-infinite elastic space and on an elastic stratum, Philos. Trans. R. Soc. A, 248, 327-368 (1956) · Zbl 0073.19401
[10] Robertson, I. A., Forced vertical vibration of a rigid circular disc on a semi-infinite elastic solid, Math. Proc. Camb. Philos. Soc., 62, 547-553 (1966) · Zbl 0161.44201
[11] Stallybrass, M. P.; Scherer, S. E., Forced vertical vibration of a rigid elliptical disc on an elastic half-space, Int. J. Eng. Sci., 14, 511-522 (1976) · Zbl 0327.73019
[12] Chen, Y. G.; Zhai, J. Y.; Han, Q. K., Vibration and damping analysis of the bladed disk with damping hard coating on blades, Aerosp. Sci. Technol., 58, 248-257 (2016)
[13] Zheng, C.; Luan, L.; Kouretzis, G.; Ding, X., Vertical vibration of a rigid strip footing on viscoelastic half-space, Int. J. Numer. Anal. Met., 44, 1983-1995 (2020)
[14] Crozier, R. J.M; Hunter, S. C., The normal vibrations of a rigid spherical punch on the surface of an elastic half-space, Proc. Edn. Math. Soc., 15, 297-307 (1967) · Zbl 0189.26302
[15] Ma, Q. L.; Kahraman, A.; Perret-Liaudet, J.; Rigaud, E., An investigation of steady-state dynamic response of a sphere-plane contact interface with contact loss, J. Appl. Mech., 74, 249-255 (2007) · Zbl 1111.74536
[16] Argatov, I. I., Slow vertical motions of an elliptic punch on an elastic half-space, Int. J. Eng. Sci., 46, 711-724 (2008) · Zbl 1213.74229
[17] Argatov, I. I., Asymptotic modeling of the impact of a spherical indenter on an elastic half-space, Int. J. Solid. Struct., 45, 5035-5048 (2008) · Zbl 1169.74515
[18] Zakorko, V. N.; Rostovtsev, N. A., Dynamic contact problem of steady vibrations of an elastic half-space, J. Appl. Math. Mech., 29, 644-653 (1965) · Zbl 0161.44107
[19] Bedding, R. J.; Willis, J. R., The dynamic indentation of an elastic half-space, J. Elast., 3, 289-309 (1973)
[20] Glushkov, Y. V.; Glushkova, N. V.; Kirillova, Y. V., The dynamic contact problem for a circular punch adhering to an elastic layer, J. Appl. Math. Mech., 56, 675-679 (1992) · Zbl 0800.73383
[21] Chao, C. C.; Tu, C. Y., Three-dimensional contact dynamics of laminated plates: Part 1. Normal impact, Compos. Part B Eng., 30, 9-22 (1999)
[22] Tian, J. Y.; Ogi, H.; Hirao, M., Dynamic-contact stiffness at the interface between a vibrating rigid sphere and a semi-infinite viscoelastic solid, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 51, 1557-1563 (2004)
[23] Argatov, I. I., Slow vertical motions of a spherical indenter on an elastic half-space, Q. J. Mech. Appl. Math., 65, 129-140 (2012) · Zbl 1248.74030
[24] Stan, G.; Adams, G. G., Adhesive contact between a rigid spherical indenter and an elastic multi-layer coated substrate, Int. J. Solid. Struct., 87, 1-10 (2016)
[25] Rahimian, M.; Eskandari-Ghadi, M.; Pak, R. Y.; Khojasteh, A., Elastodynamic potential method for transversely isotropic solid, J. Eng. Mech., 133, 1134-1145 (2007)
[26] Eskandari-Ghadi, M.; Fallahi, M.; Ardeshir-Behrestaghi, A., Forced vertical vibration of rigid circular disc on a transversely isotropic half-space, J. Eng. Mech., 136, 913-922 (2010)
[27] Hajimohammadi, A. R.; Khojasteh, A.; Rahimian, M.; Pak, R. Y.S., Vertical vibration of a rigid circular disc at the interface of a transversely isotropic bi-material, Int. J. Solid. Struct., 50, 2772-2780 (2013)
[28] Ai, Z. Y.; Li, Z. X., Time-harmonic response of transversely isotropic multilayered half-space in a cylindrical coordinate system, Soil Dyn. Earthq. Eng., 66, 69-77 (2014)
[29] Elliott, C. M.; Qi, T., A dynamic contact problem in thermoelasticity, Nonlinear Anal. Theor., 23, 883-898 (1994) · Zbl 0818.73061
[30] Belyankova, T. I.; Kalinchuk, V. V.; Suvorova, G. Y., A dynamic contact problem for a thermoelastic prestressed layer, J. Appl. Math. Mech., 76, 537-546 (2012) · Zbl 1270.74092
[31] Aboudi, J., The impact-contact problem of two nonlinearly elastic bodies, Acta Mech., 33, 81-95 (1979) · Zbl 0407.73094
[32] Krenk, S.; Schmidt, H., Vibration of an elastic circular plate on an elastic half space-a direct approach, J. Appl. Mech., 48, 161-168 (1981) · Zbl 0452.73040
[33] Schmidt, H.; Krenk, S., Asymmetric vibrations of a circular elastic plate on an elastic half space, Int. J. Solid. Struct., 18, 91-105 (1982) · Zbl 0468.73136
[34] Tian, J. Y.; Ogi, H.; Hirao, M., Vibration analysis of an elastic-sphere oscillator contacting semi-infinite viscoelastic solids in resonant ultrasound microscopy, J. Appl. Phys., 95, 8366-8375 (2004)
[35] Ai, Z. Y.; Liu, C. L., Axisymmetric vibration of an elastic circular plate bonded on a transversely isotropic multilayered half-space, Soil Dyn. Earthq. Eng., 67, 257-263 (2014)
[36] Chen, W. Q., Inclined circular flat punch on a transversely isotropic piezoelectric half-space, Arch. Appl. Mech., 69, 455-464 (1999) · Zbl 0971.74058
[37] Chen, W. Q.; Shioya, T.; Ding, H. J., The elasto-electric field for a rigid conical punch on a transversely isotropic piezoelectric half-space, J. Appl. Mech., 66, 764-771 (1999)
[38] Chen, W. Q., On piezoelastic contact problem for a smooth punch, Int. J. Solid. Struct., 37, 2331-2340 (2000) · Zbl 0974.74045
[39] Chen, Z. R.; Yu, S. W., Micro-scale adhesive contact of a spherical rigid punch on a piezoelectric half-space, Compos. Sci. Technol., 65, 1372-1381 (2005)
[40] Guo, X.; Jin, F., A generalized JKR-model for two-dimensional adhesive contact of transversely isotropic piezoelectric half-space, Int. J. Solid. Struct., 46, 3607-3619 (2009) · Zbl 1183.74183
[41] Wu, Y. F.; Yu, H. Y.; Chen, W. Q., Indentation responses of piezoelectric layered half-space, Smart Mater. Struct., 22, Article 015007 pp. (2012)
[42] Zhou, Y. T.; Lee, K. Y., Investigation of frictional sliding contact problems of triangular and cylindrical punches on monoclinic piezoelectric materials, Mech. Mater., 69, 237-250 (2014)
[43] Su, J.; Ke, L. L.; Wang, Y. S., Fretting contact of a functionally graded piezoelectric layered half-plane under a conducting punch, Smart Mater. Struct., 25, Article 025014 pp. (2016)
[44] Liu, T. J.; Zhang, C. Z., Axisymmetric conducting indenter on a functionally graded piezoelectric coating, Int. J. Mech. Sci., 115, 34-44 (2016)
[45] Hou, P. F.; Zhang, W. H., 3D analytical solutions of piezoelectric thin film structure under charged cylinder flat head contact, Meccanica, 54, 2461-2484 (2019) · Zbl 1532.74088
[46] Jin, F.; Yan, S. P.; Guo, X.; Wang, X. Y., On the contact and adhesion of a piezoelectric half-space under a rigid punch with an axisymmetric power-law profile, Mech. Mater., 129, 189-197 (2019)
[47] Çömez, I.; Güler, M. A.; El-Borgi, S., Continuous and discontinuous contact problems of a homogeneous piezoelectric layer pressed by a conducting rigid flat punch, Acta Mech., 231, 957-976 (2019) · Zbl 1434.74088
[48] Shu, Y. J.; Ke, L. L.; Su, J.; Wang, Y. S., Experimental investigation on fretting wear behavior of piezoceramics under sphere-on-flat contact, Tribol. Trans., 63, 971-985 (2020)
[49] Song, H. X.; Ke, L. L.; Su, J.; Yang, J.; Kitipornchai, S.; Wang, Y. S., Surface effect on the contact problem of a piezoelectric half-plane, Int. J. Solid. Struct., 185, 380-393 (2020)
[50] Hou, P. F.; Zhang, W. H., 3D Axisymmetric exact solutions of the piezo-coating sensors for coating/substrate system under charged conical contact, Int. J. Solid. Struct., 185, 342-364 (2020)
[51] Hou, P. F.; Zhang, W. H., The electro-mechanics of a coating/substrate system under charged spherical contact, Math. Mech. Solid., 25, 60-96 (2020) · Zbl 1446.74120
[52] Ouafik, Y., Numerical simulation of a thermo-piezoelectric contact issue with Tresca’s friction law, Appl. Model. Simul., 5, 44-52 (2021)
[53] Li, X.; Yao, Z. Y.; Wu, R. C., Modeling and analysis of stick-slip motion in a linear piezoelectric ultrasonic motor considering ultrasonic oscillation effect, Int. J. Mech. Sci., 107, 215-224 (2016)
[54] Ouafik, Y., Numerical simulation of a dynamic contact issue for piezoelectric materials, Appl. Model. Simul., 4, 272-279 (2020)
[55] Bartosz, K., Numerical analysis of a nonmonotone dynamic contact problem of a non-clamped piezoelectric viscoelastic body, Evol. Equ. Control. Theory, 9, 961-980 (2020) · Zbl 1452.74104
[56] Lv, X.; Ke, L. L.; Su, J.; Tian, J. Y., Axisymmetric contact vibration analysis of a rigid spherical punch on a piezoelectric half-space, Int. J. Solid. Struct., 210, 224-236 (2021)
[57] Johnson, K. L., Contact Mechanics (1985), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0599.73108
[58] Turner, J. R., Contact on a transversely isotropic half-space, or between two transversely isotropic bodies, Int. J. Solid. Struct., 16, 409-419 (1966) · Zbl 0422.73097
[59] Yoneda, A., Intrinsic eigenvibration frequency in the resonant ultrasound spectroscopy: evidence for a coupling vibration between a sample and transducers, Earth Planet. Space, 54, 763-770 (2002)
[60] Pao, Y. H.; Mow, C. C., Diffraction of Elastic Wave and Dynamic Stress Concentrations (1973), Rand Corporation: Rand Corporation Santa Monica
[61] Ari, B. M.; Sarva, J. S., Seismic Waves and Sources (1981), Springer-Verlagl: Springer-Verlagl Berlin · Zbl 0484.73089
[62] Ogi, H.; Fukunaga, M.; Hirao, M.; Ledbetter, H., Elastic constants, internal friction, and piezoelectric coefficient of α-TeO_2, Phys. Rev. B, 69, Article 024104 pp. (2004)
[63] Aboudi, J., Micromechanical analysis of fully coupled electro-magneto- thermo-elastic multiphase composites, Smart Mater. Struct., 10, 867-877 (2001)
[64] Fang, D. N.; Liu, J. X., Fracture Mechanics of Piezoelectric and Ferroelectric Solids (2013), Springer: Springer Berlin · Zbl 1303.74002
[65] Ke, L. L.; Wang, Y. S.; Yang, J.; Kitipornchai, S., Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory, Acta Mech. Sin., 30, 516-525 (2014) · Zbl 1346.74083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.