×

Numerical analysis of stress singularity at singular points of three-dimensional elastic bodies. (English) Zbl 1398.74129

Summary: A numerical method of constructing eigensolutions for arbitrary elastic conical bodies with smooth and non-smooth lateral surfaces is considered. Different variants of its numerical implementation based on the finite element method are discussed. The results of numerical experiments demonstrating the efficiency and reliability of the proposed method are presented. The character of stress responses (the character of stress singularities) in the vicinity of vertices of circular and non-circular cones, composite and hollow cones, cones with non-smooth lateral surfaces, trihedral wedge, one and two intersecting wedge-shaped cracks is estimated based on the obtained solutions.

MSC:

74G70 Stress concentrations, singularities in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74R05 Brittle damage
Full Text: DOI

References:

[1] Kondratiev V.A.: Boundary value problems for elliptic equations in the regions with conical and angular points. Trans. Mosc. Math. Soc. 16, 209–292 (1967)
[2] Bogy D.B.: Two edge-bonded elastic wedges of different materials and wedges angles under surface tractions. J. Appl. Mech. Trans. ASME. 38, 377–386 (1971) · doi:10.1115/1.3408786
[3] Bogy D.B., Wang K.C.: Stress singularities at interface corners in bonded dissimilar isotropic elastic materials. Int. J. Solids Struct. 7, 993–1005 (1971) · Zbl 0236.73020 · doi:10.1016/0020-7683(71)90077-1
[4] Hein V.L., Erdogan F.: Stress singularities in a two-material wedge. Int. J. Fract. 7, 317–330 (1971) · doi:10.1007/BF00184307
[5] Theocaris, P.S., Gdoutos, E.E., Thireous, C.G.: Stress singularities in a biwedge under various boundary conditions. Acta Mech. 29, 55–73 (1978) · Zbl 0377.73089
[6] Fenner D.N.: Stress singularities in composite materials with an arbitrary oriented crack meeting interface. Int. J. Fract. 12, 705–721 (1976)
[7] Yuan H.: Singular stress fields at V-notch tips in elastoplastic pressure-sensitive materials. Acta Mech. 118, 151–170 (1996) · Zbl 0879.73050 · doi:10.1007/BF01410514
[8] Dempsey J.P., Sinclair G.B.: On the stress singularities in the plane elasticity of the composite wedge. J. Elast. 9, 273–391 (1979) · Zbl 0426.73021 · doi:10.1007/BF00044615
[9] Mikhailov, S.E.: Stress singularity in the vicinity of ribs of a composite inhomogeneous anisotropic body and several applications to composites. Proc. AS USSR. Solid Mech. 5, 103–110 (1979) (in Russian)
[10] Sinclair G.B.: Stress singularities in classical elasticity-I: removal, interpretation, and analysis. Appl. Mech. Rev. 57, 251–297 (2004) · doi:10.1115/1.1762503
[11] Sinclair G.B.: Stress singularities in classical elasticity-II: asymptotic identification. Appl. Mech. Rev. 57, 385–439 (2004) · doi:10.1115/1.1767846
[12] Sih G.C.: A review of the three-dimensional stress problem for a cracked plate. Int. J. Fract. Mech. 7, 39–61 (1971)
[13] Panasyuk V.V., Andrejkiv A.E., Stadnik M.M.: Three-dimensional static crack problems solution (a review). Eng. Fract. Mech. 14, 245–260 (1981) · doi:10.1016/0013-7944(81)90001-1
[14] Keer L.M., Parihar K.S.: A note on the singularity at the corner of a wedge-shaped punch or crack. J. Appl. Mech. Trans. SIAM. 34, 297–302 (1978) · Zbl 0375.73081 · doi:10.1137/0134024
[15] Ioakimidis N.I.: Determination of the order of singularity at the apex of a wedge-shaped crack. Eng. Fract. Mech. 22, 369–373 (1985) · doi:10.1016/0013-7944(85)90138-9
[16] Xu L., Kundu T.: Stress singularities at crack corners. J. Elast. 39, 1–16 (1995) · Zbl 0828.73057 · doi:10.1007/BF00042438
[17] Glushkov E.V., Glushkova N.V., Lapina O.N.: 3D elastic stress singularity at polyhedral corner points. Int. J. Solids Struct. 36, 1105–1128 (1999) · Zbl 0927.74027 · doi:10.1016/S0020-7683(97)00361-2
[18] Dimitrov A., Andra H., Schnack E.: Efficient computation of order and mode of corner singularities in 3D-elasticity. Int. J. Numer. Methods Eng. 52, 805–827 (2001) · Zbl 1043.74042 · doi:10.1002/nme.230
[19] Takakuda K.: Stress singularities near crack front edges. Bull. Jpn. Soc. Mech. Eng. 28, 225–231 (1985) · doi:10.1299/jsme1958.28.225
[20] Folias E.S.: On the three-dimensional theory of cracked plates. J. Appl. Mech. 42, 663–674 (1975) · Zbl 0332.73092 · doi:10.1115/1.3423660
[21] Bazant Z.P., Estenssoro L.F.: Surface singularity and crack propagation. Int. J. Solids Struct. 15, 405–426 (1979) · Zbl 0424.73086 · doi:10.1016/0020-7683(79)90062-3
[22] Benthem J.P.: The quarter-infinite crack in a half-space; alternative and additional solutions. Int. J. Solids Struct. 16, 119–130 (1980) · Zbl 0463.73125 · doi:10.1016/0020-7683(80)90029-3
[23] Barsoum R.S., Chen T.: Three-dimensional surface singularity of an interface crack. Int. J. Fract. 50, 221–237 (1991) · doi:10.1007/BF00032158
[24] Ghahremani F., Shih C.F.: Corner singularities of three-dimensional planar interface cracks. J. Appl. Mech. Trans. ASME. 59, 61–68 (1992) · doi:10.1115/1.2899465
[25] Kozlov, V.A., Maz’ya, V.G., Rossmann, J.: Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations, vol. 85. American Mathematical Society Series, Mathematical Surveys and Monographs, Providence, RI (2001) · Zbl 0965.35003
[26] Ting T.: Explicit solution and invariance of the singularities at an interface crack in anisotropic composites. Int. J. Solids Struct. 22, 965–983 (1986) · Zbl 0599.73098 · doi:10.1016/0020-7683(86)90031-4
[27] Apel T., Mehrmann V., Watkins D.: Structured eigenvalue methods for the computation of corner singularities. Comput. Methods Appl. Mech. Eng. 191, 4459–4473 (2002) · Zbl 1029.74042 · doi:10.1016/S0045-7825(02)00390-0
[28] Matveenko, V.P.: A method of numerical analysis of singular stresses at angular points of three-dimensional bodies. Proc. RAS Solid Mech. 5, 71–77 (1995) (in Russian)
[29] Savruk M.P, Shkaraev S.V.: Stress singularities for three-dimensional corners using the boundary integral equation method. Theor. Appl. Fract. Mech. 36, 263–275 (2001) · doi:10.1016/S0167-8442(01)00076-3
[30] Koguchi H., Muramoto T.: The order of stress singularity near the vertex in three-dimensional joints. Int. J. Solids Struct. 37, 4737–4762 (2000) · Zbl 1002.74037 · doi:10.1016/S0020-7683(99)00159-6
[31] Glushkova N.V., Glushkov E.V., Hoff R.: Stress singularity at polyhedral corner points of elastic multimaterial joints. Doklady Phys. 370, 181–185 (2000)
[32] Bazant Z.P.: Three-dimensional harmonic functions near termination or intersection of gradient singularity lines: a general numerical method. Int. J. Eng. Sci. 12, 221–243 (1974) · Zbl 0275.65027 · doi:10.1016/0020-7225(74)90003-2
[33] Somaranta N., Ting T.: Three dimensional stress singularities in anisotropic materials and composites. Int. J. Solids Struct. 24, 1115–1134 (1986) · Zbl 0587.73101
[34] Ghahermani F.: A numerical variational method for extracting 3D singularities. Int. J. Solids Struct. 27, 1371–1386 (1991) · Zbl 0825.73847 · doi:10.1016/0020-7683(91)90037-G
[35] Parihar K.S., Keer L.M.: Singularity at the vertex of pyramidal notches with three equal angles. Q. J. Mech. Appl. Math. 35, 401–405 (1977) · Zbl 0372.73058
[36] Parihar K.S., Keer L.M.: Elastic stress singularities at conical inclusions. Int. J. Solids Struct. 14, 261–263 (1978) · Zbl 0377.73021 · doi:10.1016/0020-7683(78)90036-7
[37] Picu C.R., Gupta V.: Three-dimensional stress singularities at the tip of a grain triple junction line interesting the free surface. J. Mech. Phys. Solids. 45, 1495–1520 (1997) · Zbl 0974.74526 · doi:10.1016/S0022-5096(97)00014-8
[38] Matveenko V.P., Nakaryakova T.O., Sevodina N.V., Shadakov I.N.: Investigation of singularity of stresses at the apex of a cone with an elliptic base. Doklady Phys. 51, 630–633 (2006) · Zbl 1257.74064 · doi:10.1134/S1028335806110140
[39] Schmitz H., Volk K., Wendland W.L.: On three-dimensional singularities of elastic fields near vertices. Numer. Methods Partial Differ. Equ. 9, 323–337 (1993) · Zbl 0771.73014 · doi:10.1002/num.1690090309
[40] Loveikin A.V., Ulitko A.F.: On the stress field singularity in an incompressible half-space weakened by two near-surface wedge-like cracks. Mech. Solids 4, 585–595 (2009) · doi:10.3103/S0025654409040098
[41] Williams M.L.: Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. Appl. Mech. 19, 526–528 (1952)
[42] Herrmann L.R.: Elastic equations for incompressible and nearly incompressible materials by variational theorem. Am. Inst. Aeronaut. Astronaut. J. 3, 1896–1900 (1965) · doi:10.2514/3.3277
[43] Kozhevnikova L.L., Matveenko V.P.: On some details of computation of structures made of incompressible or weakly compressible materials. Polym. Mater. Mech. Eng. Trans. PPI. 146, 104–109 (1974)
[44] Herrmann L.R., Toms R.M.: A reformulation of the elastic field equation in terms of displacements valid for all admissible values of Poisson’s ratio. J. Appl. Mech. Am. Math. Soc. 31, 140–141 (1964)
[45] Strang G., Fix G.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood (1977) · Zbl 0356.65096
[46] Muller, D.E.: A method for solving algebraic equation using an automatic computer. Mathematical Table 208–215 (1956) · Zbl 0072.34002
[47] Lavrentiev, M.A., Shabat, B.V.: Methods in the theory of functions of a complex variable. Moscow. Nauka. (1973) (in Russian)
[48] Timoshenko S.P., Goodier J.N.: Theory of Elasticity. The Mcgraw-Hill Book Company, Inc., New York (1961) · Zbl 0045.26402
[49] Borzenkov, S.M., Matveenko, V.P.: Optimization of Elastic Bodies in the Vicinity of Singular Points. Trans. RAS. Solid Mech. 2, 93–100 (1996) (in Russian)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.