×

Beyond Whittle: nonparametric correction of a parametric likelihood with a focus on Bayesian time series analysis. (English) Zbl 1435.62332

Summary: Nonparametric Bayesian inference has seen a rapid growth over the last decade but only few nonparametric Bayesian approaches to time series analysis have been developed. Most existing approaches use Whittle’s likelihood for Bayesian modelling of the spectral density as the main nonparametric characteristic of stationary time series. It is known that the loss of efficiency using P. Whittle’s likelihood can be substantial [J. R. Stat. Soc., Ser. B 19, 38–47 (1957; Zbl 0089.35701)]. On the other hand, parametric methods are more powerful than nonparametric methods if the observed time series is close to the considered model class but fail if the model is misspecified. Therefore, we suggest a nonparametric correction of a parametric likelihood that takes advantage of the efficiency of parametric models while mitigating sensitivities through a nonparametric amendment. We use a nonparametric Bernstein polynomial prior on the spectral density with weights induced by a Dirichlet process and prove posterior consistency for Gaussian stationary time series. Bayesian posterior computations are implemented via an MH-within-Gibbs sampler and the performance of the nonparametrically corrected likelihood for Gaussian time series is illustrated in a simulation study and in three astronomy applications, including estimating the spectral density of gravitational wave data from the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO).

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
83C35 Gravitational waves
62G09 Nonparametric statistical resampling methods
85A35 Statistical astronomy

Citations:

Zbl 0089.35701

References:

[1] Aasi, J., the LIGO Scientific Collaboration, and the Virgo Collaboration (2015a). “Characterization of the LIGO detectors during their sixth science run.” Classical and Quantum Gravity, 32: 115012.
[2] Aasi, J. et al. (2015b). “Advanced LIGO.” Classical and Quantum Gravity, 32: 074001.
[3] Abbott, B. P. et al. (2016a). “GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence.” Physical Review Letters, 116: 241103.
[4] Abbott, B. P. et al. (2016b). “Observation of gravitational waves from a binary black hole merger.” Physical Review Letters, 116: 061102.
[5] Abbott, B. P. et al. (2016c). “Properties of the binary black hole merger GW150914.” Physical Review Letters, 116: 241102.
[6] Abbott, B. P. et al. (2017a). “GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2.” Physical Review Letters, 118: 221101.
[7] Abbott, B. P. et al. (2017b). “GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence.” The Astrophysical Journal Letters, 851: L35.
[8] Abbott, B. P. et al. (2017c). “GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence.” Physical Review Letters, 119: 141101.
[9] Abbott, B. P. et al. (2017d). “Multi-messenger Observations of a Binary Neutron Star Merger.” The Astrophysical Journal Letters, 848: L12.
[10] Acernese, F. et al. (2015). “Advanced Virgo: A second-generation interferometric gravitational wave detector.” Classical and Quantum Gravity, 32(2): 024001.
[11] Andrews, D. W. K. and Monahan, J. C. (1992). “An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator.” Econometrica, 60(4): 953-966. · Zbl 0778.62103 · doi:10.2307/2951574
[12] Baldwin, A. and Thomson, P. (1978). “Periodogram analysis of S. Carinae.” Royal Astronomical Society of New Zealand, 6: 31-35.
[13] Barnett, G., Kohn, R., and Sheather, S. (1996). “Bayesian estimation of an autoregressive model using Markov chain Monte Carlo.” Journal of Econometrics, 74(2): 237-254. · Zbl 0864.62057 · doi:10.1016/0304-4076(95)01744-5
[14] Bauwens, L., Lubrano, M., and Richard, J.-F. (2000). Bayesian inference in dynamic econometric models. Oxford University Press. · Zbl 0986.62101
[15] Bollerslev, T. (1986). “Generalized autoregressive conditional heteroskedasticity.” Journal of Econometrics, 31(3): 307-327. · Zbl 0616.62119 · doi:10.1016/0304-4076(86)90063-1
[16] Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (2013). Time series analysis: Forecasting and control. John Wiley & Sons. · Zbl 1154.62062
[17] Brockwell, P. J. and Davis, R. A. (2009). Time series: Theory and methods. Springer. · Zbl 1169.62074
[18] Cadonna, A., Kottas, A., and Prado, R. (2017). “Bayesian mixture modeling for spectral density estimation.” Statistics & Probability Letters, 125: 189-195. · Zbl 1380.62237 · doi:10.1016/j.spl.2017.02.008
[19] Carter, C. and Kohn, R. (1997). “Semiparametric Bayesian inference for time series with mixed spectra.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59(1): 255-268. · Zbl 0889.62078 · doi:10.1111/1467-9868.00067
[20] Chopin, N., Rousseau, J., and Liseo, B. (2013). “Computational aspects of Bayesian spectral density estimation.” Journal of Computational and Graphical Statistics, 22(3): 533-557.
[21] Choudhuri, N., Ghosal, S., and Roy, A. (2004). “Bayesian estimation of the spectral density of a time series.” Journal of the American Statistical Association, 99(468): 1050-1059. · Zbl 1055.62100 · doi:10.1198/016214504000000557
[22] Christensen, N. (2010). “LIGO S6 detector characterization studies.” Classical and Quantum Gravity, 27: 194010.
[23] Contreras-Cristán, A., Gutiérrez-Peña, E., and Walker, S. G. (2006). “A note on Whittle’s likelihood.” Communications in Statistics - Simulation and Computation, 35(4): 857-875. · Zbl 1105.62089
[24] Cornish, N. J. and Littenberg, T. B. (2015). “Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches.” Classical and Quantum Gravity, 32: 135012.
[25] Costa, M. J., Finkenstädt, B., Roche, V., Ladvi, F., Gould, P. D., Foreman, J., Halliday, K., Hall, A., and Rand, D. A. (2013). “Inference on periodicity of circadian time series.” Biostatistics, 14(4): 792-806.
[26] Coughlin, M., the LIGO Scientific Collaboration, and the Virgo Collaboration (2010). “Noise Line Identification in LIGO S6 and Virgo VSR2.” Journal of Physics: Conference Series, 243: 012010.
[27] Dahlhaus, R. and Janas, D. (1996). “A frequency domain bootstrap for ratio statistics in time series analysis.” The Annals of Statistics, 24(5): 1934-1963. · Zbl 0867.62072 · doi:10.1214/aos/1069362304
[28] Durbin, J. and Koopman, S. (2012). Time series analysis by state space methods. 38. Oxford University Press. · Zbl 1270.62120
[29] Edwards, M. C., Meyer, R., and Christensen, N. (2015). “Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis.” Physical Review D, 92: 064011.
[30] Edwards, M. C., Meyer, R., and Christensen, N. (2018). “Bayesian nonparametric spectral density estimation using B-spline priors.” Statistics and Computing. DOI: 10.1007/s11222-017-9796-9. · Zbl 1430.62072 · doi:10.1007/s11222-017-9796-9
[31] Einstein, A. (1916). “Approximative integration of the field equations of gravitation.” Sitzungsberichte Preußischen Akademie der Wissenschaften, 1916(Part 1): 688-696. · JFM 46.1293.02
[32] Emmanoulopoulos, D., McHardy, I., and Papadakis, I. (2013). “Generating artificial light curves: Revisited and updated.” Monthly Notices of the Royal Astronomical Society, 433(2): 907-927.
[33] Engle, R. (1982). “Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation.” Econometrica: Journal of the Econometric Society, 987-1007. · Zbl 0491.62099 · doi:10.2307/1912773
[34] Fan, J. and Yao, Q. (2002). Nonlinear time series, volume 2. Springer.
[35] Franke, J. and Härdle, W. (1992). “On bootstrapping kernel spectral estimates.” The Annals of Statistics, 121-145. · Zbl 0757.62048 · doi:10.1214/aos/1176348515
[36] Fuller, W. (1996). Introduction to Statistical Time Series. Wiley Series in Probability and Statistics. Wiley. · Zbl 0851.62057
[37] Gangopadhyay, A., Mallick, B., and Denison, D. (1999). “Estimation of spectral density of a stationary time series via an asymptotic representation of the periodogram.” Journal of Statistical Planning and Inference, 75(2): 281-290. · Zbl 0933.62094 · doi:10.1016/S0378-3758(98)00148-7
[38] Gelman, A. (2006). “Prior distributions for variance parameters in hierarchical models.” Bayesian Analysis, 1(3): 515-533. · Zbl 1331.62139 · doi:10.1214/06-BA117A
[39] Ghosal, S., Ghosh, J., and Ramamoorthi, R. (1999). “Posterior consistency of Dirichlet mixtures in density estimation.” Annals of Statistics, 27: 143-158. · Zbl 0932.62043 · doi:10.1214/aos/1018031105
[40] Green, P. J. (1995). “Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.” Biometrika, 82(4): 711-732. · Zbl 0861.62023 · doi:10.1093/biomet/82.4.711
[41] Häfner, F. and Kirch, C. (2016). “Moving Fourier analysis for locally stationary processes with the bootstrap in view.” Preprint. · Zbl 1416.62492
[42] Härdle, W., Horowitz, J., and Kreiss, J.-P. (2003). “Bootstrap methods for time series.” International Statistical Review, 71(2): 435-459. · Zbl 1114.62347
[43] Härdle, W., Lütkepohl, H., and Chen, R. (1997). “A review of nonparametric time series analysis.” International Statistical Review, 65(1): 49-72. · Zbl 0887.62043
[44] Hermansen, G. H. (2008). “Bayesian nonparametric modelling of covariance functions, with application to time series and spatial statistics.” Ph.D. thesis, Universitetet i Oslo.
[45] Hidalgo, J. (2008). “Specification testing for regression models with dependent data.” Journal of Econometrics, 143(1): 143-165. · Zbl 1418.62331 · doi:10.1016/j.jeconom.2007.08.013
[46] Hjort, N. L. and Glad, I. K. (1995). “Nonparametric density estimation with a parametric start.” The Annals of Statistics, 882-904. · Zbl 0838.62027 · doi:10.1214/aos/1176324627
[47] Hjort, N. L., Holmes, C. C., Müller, P., and Walker, S. G. (2010). “Bayesian nonparametrics.” AMC, 10: 12.
[48] Huerta, G. and West, M. (1999). “Bayesian inference on periodicities and component spectral structure in time series.” Journal of Time Series Analysis, 20: 401-416. · Zbl 0958.62090 · doi:10.1111/1467-9892.00145
[49] Hurvich, C. M. and Zeger, S. (1987). Frequency domain bootstrap methods for time series. New York University, Graduate School of Business Administration.
[50] Jentsch, C. and Kreiss, J.-P. (2010). “The multiple hybrid bootstrap - Resampling multivariate linear processes.” Journal of Multivariate Analysis, 101(10): 2320-2345. · Zbl 1198.62036 · doi:10.1016/j.jmva.2010.06.005
[51] Jentsch, C., Kreiss, J.-P., Mantalos, P., and Paparoditis, E. (2012). “Hybrid bootstrap aided unit root testing.” Computational Statistics, 27(4): 779-797. · Zbl 1304.65043 · doi:10.1007/s00180-011-0290-0
[52] Kim, Y. M. and Nordman, D. J. (2013). “A frequency domain bootstrap for Whittle estimation under long-range dependence.” Journal of Multivariate Analysis, 115: 405-420. · Zbl 1259.62084 · doi:10.1016/j.jmva.2012.10.018
[53] Kirch, C. (2007). “Resampling in the frequency domain of time series to determine critical values for change-point tests.” Statistics & Decisions, 25(3/2007): 237-261. · Zbl 1146.62032 · doi:10.1524/stnd.2007.0902
[54] Kirch, C. and Politis, D. N. (2011). “TFT-bootstrap: Resampling time series in the frequency domain to obtain replicates in the time domain.” Annals of Statistics, 39(3): 1427-1470. · Zbl 1220.62107 · doi:10.1214/10-AOS868
[55] Kirch, C., Edwards, M. C., Meier, A., and Meyer, R. (2018). “Supplementary material to ‘Beyond Whittle: Nonparametric Correction of a Parametric Likelihood with a Focus on Bayesian Time Series Analysis’.” Bayesian Analysis. · Zbl 1435.62332
[56] Kleijn, B. J. K., van der Vaart, A. W., et al. (2012). “The Bernstein-von-Mises theorem under misspecification.” Electronic Journal of Statistics, 6: 354-381. · Zbl 1274.62203 · doi:10.1214/12-EJS675
[57] Kreiss, J.-P. and Lahiri, S. N. (2012). “Bootstrap Methods for Time Series.” Handbook of Statistics, 30: 3-26.
[58] Kreiss, J.-P. and Paparoditis, E. (2003). “Autoregressive-aided periodogram bootstrap for time series.” Annals of Statistics, 31(6): 1923-1955. · Zbl 1042.62081 · doi:10.1214/aos/1074290332
[59] Kreiss, J.-P. and Paparoditis, E. (2011). “Bootstrap methods for dependent data: A review.” Journal of the Korean Statistical Society, 40(4): 357-378. · Zbl 1296.62172 · doi:10.1016/j.jkss.2011.08.009
[60] Kreiss, J.-P. and Paparoditis, E. (2012). “The hybrid wild bootstrap for time series.” Journal of the American Statistical Association, 107(499): 1073-1084. · Zbl 1443.62272 · doi:10.1080/01621459.2012.695664
[61] Kreiss, J.-P., Paparoditis, E., and Politis, D. N. (2011). “On the range of validity of the autoregressive sieve bootstrap.” The Annals of Statistics, 2103-2130. · Zbl 1227.62067 · doi:10.1214/11-AOS900
[62] Le Cam, L. and Yang, G.. (1960). Asymptotics in Statistics. Springer.
[63] Liseo, B. and Macaro, C. (2013). “Objective priors for causal AR (p) with partial autocorrelations.” Journal of Statistical Computation and Simulation, 83(9): 1613-1628. · Zbl 1453.62639
[64] Liseo, B., Marinucci, D., and Petrella, L. (2001). “Bayesian semiparametric inference on long-range dependence.” Biometrika, 88(4): 1089-1104. · Zbl 0986.62069
[65] Littenberg, T. B. and Cornish, N. J. (2015). “Bayesian inference for spectral estimation of gravitational wave detector noise.” Physical Review D, 91: 084034.
[66] Littenberg, T. B., Coughlin, M., Farr, B., and M., F. W. (2013). “Fortifying the characterization of binary mergers in LIGO data.” Physical Review D, 88: 084044.
[67] McCulloch, R. E. and Tsay, R. S. (1994). “Bayesian analysis of autoregressive time series via the Gibbs sampler.” Journal of Time Series Analysis, 15(2): 253-250. · Zbl 0800.62549 · doi:10.1111/j.1467-9892.1994.tb00188.x
[68] Meier, A., Kirch, C., Edwards, M. C., and Meyer, R. (2017). beyondWhittle: Bayesian Spectral Inference for Stationary Time Series. R package.
[69] Müller, P. and Mitra, R. (2013). “Bayesian nonparametric inference-why and how.” Bayesian Analysis (Online), 8(2). · Zbl 1329.62172
[70] Nam, C., Aston, J., and Johansen, A. (2014). “Parallel sequential Monte Carlo samplers and estimation of the number of states in a Hidden Markov Model.” Annals of the Institute of Statistical Mathematics, 66: 553-575. · Zbl 1337.62206 · doi:10.1007/s10463-014-0450-4
[71] Neumann, M. H. and Polzehl, J. (1998). “Simultaneous bootstrap confidence bands in nonparametric regression.” Journal of Nonparametric Statistics, 9(4): 307-333. · Zbl 0913.62041 · doi:10.1080/10485259808832748
[72] Petrone, S. (1999). “Random Bernstein polynomials.” Scandinavian Journal of Statistics, 26(3): 373-393. · Zbl 0939.62046 · doi:10.1111/1467-9469.00155
[73] Roberts, G. O. and Rosenthal, J. S. (2009). “Examples of adaptive MCMC.” Journal of Computational and Graphical Statistics, 18(2): 349-367.
[74] Rousseau, J., Chopin, N., Liseo, B., et al. (2012). “Bayesian nonparametric estimation of the spectral density of a long or intermediate memory Gaussian process.” The Annals of Statistics, 40(2): 964-995. · Zbl 1274.62340 · doi:10.1214/11-AOS955
[75] Röver, C., Meyer, R., and Christensen, N. (2011). “Modelling coloured residual noise in gravitational-wave signal processing.” Classical and Quantum Gravity, 28: 015010. · Zbl 1207.83017
[76] Schuster, A. (1898). “On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena.” Terrestrial Magnetism, 3(1): 13-41.
[77] Sethuraman, J. (1994). “A constructive definition of Dirichlet priors.” Statistica Sinica, 639-650. · Zbl 0823.62007
[78] Shao, X. and Wu, B. W. (2007). “Asymptotic spectral theory for nonlinear time series.” Annals of Statistics, 35(4): 1773-1801. · Zbl 1147.62076 · doi:10.1214/009053606000001479
[79] Sørbye, S. H. and Rue, H. (2016). “Penalised complexity priors for stationary autoregressive processes.” arXiv preprint arXiv:1608.08941. · Zbl 1416.62529
[80] Steel, M. F. J. (2008). “The New Palgrave Dictionary of Economics, chapter Bayesian time series analysis.”
[81] Sykulski, A., Olhede, S., Lilly, J., Guillaumin, A., and Early, J. (2017). “The de-biased Whittle likelihood.” arXiv preprint arXiv:1605.06718v2. · Zbl 1454.62094 · doi:10.1093/biomet/asy071
[82] Szabó, B., van der Vaart, A., van Zanten, J., et al. (2015). “Frequentist coverage of adaptive nonparametric Bayesian credible sets.” The Annals of Statistics, 43(4): 1391-1428. · Zbl 1317.62040 · doi:10.1214/14-AOS1270
[83] Van der Vaart, A. W. (1998). Asymptotic statistics, volume 3. Cambridge University Press. · Zbl 0910.62001
[84] Walker, S. (2013). Bayesian Theory and Applications, chapter Bayesian nonparametrics, 1-34. Oxford University Press.
[85] Wasserman, L. (2006). All of nonparametric statistics. Springer. · Zbl 1099.62029
[86] Welch, P. D. (1967). “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms.” IEEE Transactions on Audio and Electroacoustics, 15: 70-73.
[87] Whittle, P. (1957). “Curve and periodogram smoothing.” Journal of the Royal Statistical Society. Series B (Methodological), 38-63. · Zbl 0089.35701 · doi:10.1111/j.2517-6161.1957.tb00242.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.