×

Vacuum instability due to the creation of neutral fermion with anomalous magnetic moment by magnetic-field inhomogeneities. (English) Zbl 1521.81455

Summary: We study neutral fermions pair creation with anomalous magnetic moment from the vacuum by time-independent magnetic-field inhomogeneity as an external background. We show that the problem is technically reduced to the problem of charged-particle creation by an electric step, for which the nonperturbative formulation of strong-field QED is used. We consider a magnetic step given by an analytic function and whose inhomogeneity may vary from a “gradual” to a “sharp” field configuration. We obtain corresponding exact solutions of the Dirac-Pauli equation with this field and calculate pertinent quantities characterizing vacuum instability, such as the differential mean number and flux density of pairs created from the vacuum, vacuum fluxes of energy and magnetic moment. We show that the vacuum flux in one direction is formed from fluxes of particles and antiparticles of equal intensity and with the same magnetic moments parallel to the external field. Backreaction to the vacuum fluxes leads to a smoothing of the magnetic-field inhomogeneity. We also estimate critical magnetic field intensities, near which the phenomenon could be observed.

MSC:

81V10 Electromagnetic interaction; quantum electrodynamics
83C50 Electromagnetic fields in general relativity and gravitational theory
81V15 Weak interaction in quantum theory
35Q40 PDEs in connection with quantum mechanics
81T50 Anomalies in quantum field theory

Software:

DLMF

References:

[1] Schwinger, JS, On gauge invariance and vacuum polarization, Phys. Rev., 82, 664 (1951) · Zbl 0043.42201
[2] O. Klein, Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac (in German), Z. Phys.53 (1929) 157 [INSPIRE]. · JFM 55.0527.04
[3] F. Sauter, Uber das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs (in German), Z. Phys.69 (1931) 742 [INSPIRE]. · Zbl 0002.16802
[4] F. Sauter, Zum “Kleinschen Paradoxon” (in German), Z. Phys.73 (1932) 547 [INSPIRE].
[5] Heisenberg, W.; Euler, H., Consequences of Dirac’s theory of positrons, Z. Phys., 98, 714 (1936) · JFM 62.1002.03
[6] W. Greiner, B. Müller and J. Rafelski, Quantum electrodynamics of strong fields, Springer, Berlin, Heidelberg, Germany (1985).
[7] A. A. Grib, S. G. Mamaev and V. M. Mostepanenko, Vacuum quantum effects in strong fields, Friedmann Laboratory, St. Petersburg, Russia (1994).
[8] E. S. Fradkin, D. M. Gitman and S. M. Shvartsman, Quantum electrodynamics with unstable vacuum, Springer-Verlag, Berlin, Germany (1991).
[9] G. V. Dunne, Heisenberg-Euler effective Lagrangians: basics and extensions, in I. Kogan memorial volume, from fields to strings: circumnavigating theoretical physics, M. Shifman, A. Vainshtein and J. Wheater eds., World Scientific, Singapore (2005), pg. 445. · Zbl 1081.81116
[10] Ruffini, R.; Vereshchagin, G.; Xue, S-S, Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes, Phys. Rept., 487, 1 (2010)
[11] Dunne, GV, New strong-field QED effects at ELI: nonperturbative vacuum pair production, Eur. Phys. J. D, 55, 327 (2009)
[12] Gelis, F.; Tanji, N., Schwinger mechanism revisited, Prog. Part. Nucl. Phys., 87, 1 (2016)
[13] Di Piazza, A.; Müller, C.; Hatsagortsyan, KZ; Keitel, CH, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys., 84, 1177 (2012)
[14] Hegelich, BM; Mourou, G.; Rafelski, J., Probing the quantum vacuum with ultra intense laser pulses, Eur. Phys. J. ST, 223, 1093 (2014)
[15] Adorno, TC; Gavrilov, SP; Gitman, DM, Exactly solvable cases in QED with t-electric potential steps, Int. J. Mod. Phys. A, 32, 1750105 (2017) · Zbl 1371.81003
[16] Lin, Q-G, Pair creation of neutral particles in a vacuum by external electromagnetic fields in (2 + 1)-dimensions, J. Phys. G, 25, 1793 (1999)
[17] Lee, HK; Yoon, Y., Production of neutral fermion in inhomogeneous magnetic field through Pauli interaction, JHEP, 03, 078 (2006)
[18] Lee, HK; Yoon, Y., Effective potential for uniform magnetic fields through Pauli interaction, JHEP, 03, 086 (2007)
[19] Lee, HK; Yoon, Y., Fermion production in strong magnetic field and its astrophysical implications, Mod. Phys. Lett. A, 22, 2081 (2007) · Zbl 1143.85003
[20] Gavrilov, SP; Gitman, DM, Creation of neutral fermions with anomalous magnetic moments from a vacuum by inhomogeneous magnetic fields, Phys. Rev. D, 87 (2013)
[21] Dombey, N.; Calogeracos, A., Seventy years of the Klein paradox, Phys. Rept., 315, 41 (1999) · Zbl 0924.35117
[22] Gavrilov, SP; Gitman, DM, Quantization of charged fields in the presence of critical potential steps, Phys. Rev. D, 93 (2016)
[23] Gavrilov, SP; Gitman, DM, Regularization, renormalization and consistency conditions in QED with x-electric potential steps, Eur. Phys. J. C, 80, 820 (2020)
[24] The NIST reference on constants, units, and uncertainty webpage, https://physics.nist.gov/cuu/Constants/index.html.
[25] DONUT collaboration, A new upper limit for the τ -neutrino magnetic moment, Phys. Lett. B513 (2001) 23 [hep-ex/0102026] [INSPIRE].
[26] A. G. Beda et al., The results of search for the neutrino magnetic moment in GEMMA experiment, Adv. High Energy Phys.2012 (2012) 350150 [INSPIRE].
[27] Raffelt, GG, New bound on neutrino dipole moments from globular cluster stars, Phys. Rev. Lett., 64, 2856 (1990)
[28] Raffelt, GG, Core mass at the helium flash from observations and a new bound on neutrino electromagnetic properties, Astrophys. J., 365, 559 (1990)
[29] Raffelt, G.; Weiss, A., Nonstandard neutrino interactions and the evolution of red giants, Astron. Astrophys., 264, 536 (1992)
[30] Castellani, V.; Degl’Innocenti, S., Stellar evolution as a probe of neutrino properties, Astrophys. J., 402, 574 (1993)
[31] Catelan, M.; Pacheco, JA d. F.; Horvath, JE, The helium-core mass at the helium flash in low-mass red giant stars: observations and theory, Astrophys. J., 461, 231 (1996)
[32] Viaux, N., Particle-physics constraints from the globular cluster M5: neutrino dipole moments, Astron. Astrophys., 558, A12 (2013)
[33] Bell, NF; Cirigliano, V.; Ramsey-Musolf, MJ; Vogel, P.; Wise, MB, How magnetic is the Dirac neutrino?, Phys. Rev. Lett., 95, 151802 (2005)
[34] Aboubrahim, A.; Ibrahim, T.; Itani, A.; Nath, P., Large neutrino magnetic dipole moments in MSSM extensions, Phys. Rev. D, 89 (2014)
[35] Giunti, C.; Studenikin, A., Neutrino electromagnetic properties, Phys. Atom. Nucl., 72, 2089 (2009)
[36] M. Dvornikov, Field theory description of neutrino oscillations, in Neutrinos: properties, sources and detection, J. P. Greene ed., Nova Science Publishers, New York, NY, U.S.A. (2011), pg. 23 [arXiv:1011.4300] [INSPIRE].
[37] Broggini, C.; Giunti, C.; Studenikin, A., Electromagnetic properties of neutrinos, Adv. High Energy Phys., 2012 (2012) · Zbl 1263.81275
[38] Giunti, C.; Studenikin, A., Neutrino electromagnetic interactions: a window to new physics, Rev. Mod. Phys., 87, 531 (2015)
[39] Giunti, C.; Kouzakov, KA; Li, Y-F; Lokhov, AV; Studenikin, AI; Zhou, S., Electromagnetic neutrinos in laboratory experiments and astrophysics, Annalen Phys., 528, 198 (2016) · Zbl 1341.81048
[40] Kusenko, A., Sterile neutrinos: the dark side of the light fermions, Phys. Rept., 481, 1 (2009)
[41] Drewes, M., A white paper on keV sterile neutrino dark matter, JCAP, 01, 025 (2017)
[42] K. Sigurdson, M. Doran, A. Kurylov, R. R. Caldwell and M. Kamionkowski, Dark-matter electric and magnetic dipole moments, Phys. Rev. D70 (2004) 083501 [Erratum ibid.73 (2006) 089903] [astro-ph/0406355] [INSPIRE].
[43] Gardner, S., Observing dark matter via the gyromagnetic Faraday effect, Phys. Rev. Lett., 100 (2008)
[44] Crucean, C.; Băloi, M-A, Fermion production in a magnetic field in a de Sitter universe, Phys. Rev. D, 93 (2016) · Zbl 1338.83191
[45] Băloi, M-A; Crucean, C.; Popescu, D., Scalar pair production in a magnetic field in de Sitter universe, Eur. Phys. J. C, 78, 398 (2018)
[46] Băloi, M-A; Popescu, D.; Crucean, C., Total probability and number of fermion production in external electric field and magnetic field in de Sitter universe, Nucl. Phys. B, 956 (2020) · Zbl 1473.83013
[47] Affleck, IK; Manton, NS, Monopole pair production in a magnetic field, Nucl. Phys. B, 194, 38 (1982)
[48] Affleck, IK; Alvarez, O.; Manton, NS, Pair production at strong coupling in weak external fields, Nucl. Phys. B, 197, 509 (1982)
[49] Kobayashi, T., Monopole-antimonopole pair production in primordial magnetic fields, Phys. Rev. D, 104 (2021)
[50] Long, AJ; Vachaspati, T., Implications of a primordial magnetic field for magnetic monopoles, axions, and Dirac neutrinos, Phys. Rev. D, 91 (2015)
[51] J. A. Grifols, E. Massó, S. Mohanty and K. V. Shajesh, Pair production of light pseudoscalar particles in strong inhomogeneous fields by the Schwinger mechanism, Phys. Rev. D60 (1999) 097701 [Erratum ibid.65 (2002) 099905] [hep-ph/9906255] [INSPIRE].
[52] Grifols, JA; Massó, E.; Mohanty, S.; Shajesh, KV, Production of light pseudoscalars in external electromagnetic fields by the Schwinger mechanism, Phys. Rev. D, 65 (2002)
[53] Gould, O.; Ho, DL-J; Rajantie, A., Towards Schwinger production of magnetic monopoles in heavy-ion collisions, Phys. Rev. D, 100 (2019)
[54] A. Rajantie, Monopole-antimonopole pair production by magnetic fields, Phil. Trans. Roy. Soc. A377 (2019) 20190333.
[55] Gould, O.; Ho, DL-J; Rajantie, A., Schwinger pair production of magnetic monopoles: momentum distribution for heavy-ion collisions, Phys. Rev. D, 104 (2021)
[56] MoEDAL collaboration, Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC, JHEP08 (2016) 067 [arXiv:1604.06645] [INSPIRE].
[57] MoEDAL collaboration, Search for magnetic monopoles with the MoEDAL forward trapping detector in 2.11 fb^−1of 13 TeV proton-proton collisions at the LHC, Phys. Lett. B782 (2018) 510 [arXiv:1712.09849] [INSPIRE].
[58] MoEDAL collaboration, Magnetic monopole search with the full MoEDAL trapping detector in 13 TeV pp collisions interpreted in photon-fusion and Drell-Yan production, Phys. Rev. Lett.123 (2019) 021802 [arXiv:1903.08491] [INSPIRE].
[59] Mavromatos, NE; Mitsou, VA, Magnetic monopoles revisited: models and searches at colliders and in the Cosmos, Int. J. Mod. Phys. A, 35, 2030012 (2020)
[60] Tavecchio, F.; Ghisellini, G.; Foschini, L.; Bonnoli, G.; Ghirlanda, G.; Coppi, P., The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229 + 200, Mon. Not. Roy. Astron. Soc., 406, L70 (2010)
[61] Neronov, A.; Vovk, I., Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars, Science, 328, 73 (2010)
[62] Dermer, CD; Cavadini, M.; Razzaque, S.; Finke, JD; Chiang, J.; Lott, B., Time delay of cascade radiation for TeV blazars and the measurement of the intergalactic magnetic field, Astrophys. J. Lett., 733, L21 (2011)
[63] A. Loeb, Bound neutrino sphere and spontaneous neutrino pair creation in cold neutron stars, Phys. Rev. Lett.64 (1990) 115 [Erratum ibid.64 (1990) 3203] [INSPIRE].
[64] Kachelriess, M., Neutrino selfenergy and pair creation in neutron stars, Phys. Lett. B, 426, 89 (1998)
[65] Kiers, K.; Weiss, N., Coherent neutrino interactions in a dense medium, Phys. Rev. D, 56, 5776 (1997)
[66] Kusenko, A.; Postma, M., Neutrino production in matter with variable density, and a limit on the rotation speed of a neutron star, Phys. Lett. B, 545, 238 (2002)
[67] Koers, HBJ, Perturbative neutrino pair creation by an external source, Phys. Lett. B, 605, 384 (2005)
[68] Gorbar, EV; Gusynin, VP; Miransky, VA, Dynamical chiral symmetry breaking on a brane in reduced QED, Phys. Rev. D, 64, 105028 (2001)
[69] Dvornikov, M., Unruh effect for neutrinos interacting with accelerated matter, JHEP, 08, 151 (2015) · Zbl 1388.83908
[70] Lai, D., Matter in strong magnetic fields, Rev. Mod. Phys., 73, 629 (2001)
[71] Akiyama, S.; Wheeler, JC; Meier, DL; Lichtenstadt, I., The magnetorotational instability in core collapse supernova explosions, Astrophys. J., 584, 954 (2003)
[72] Mereghetti, S., The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars, Astron. Astrophys. Rev., 15, 225 (2008)
[73] Ferrer, EJ; de la Incera, V.; Keith, JP; Portillo, I.; Springsteen, PL, Equation of state of a dense and magnetized fermion system, Phys. Rev. C, 82 (2010)
[74] Paulucci, L.; Ferrer, EJ; de la Incera, V.; Horvath, JE, Equation of state for the MCFL phase and its implications for compact star models, Phys. Rev. D, 83 (2011)
[75] Pauli, W., Relativistic field theories of elementary particles, Rev. Mod. Phys., 13, 203 (1941) · JFM 67.1125.03
[76] V. G. Bagrov and D. M. Gitman, The Dirac equation and its solutions, De Gruyter, Berlin, Germany (2014). · Zbl 1305.81001
[77] T. C. Adorno, S. P. Gavrilov and D. M. Gitman, Vacuum instability in a constant inhomogeneous electric field. A new example of exact nonperturbative calculations, Eur. Phys. J. C80 (2020) 88 [arXiv:1911.09809] [INSPIRE].
[78] Nikishov, AI, Barrier scattering in field theory removal of Klein paradox, Nucl. Phys. B, 21, 346 (1970)
[79] A. I. Nikishov, Problems of intense external field in quantum electrodynamics, in Quantum electrodynamics of phenomena in intense fields, Proc. P. N. Lebedev Phys. Inst. 111, Nauka, Moscow, Russia (1979), pg. 153.
[80] Gavrilov, SP; Gitman, DM, Scattering and pair creation by a constant electric field between two capacitor plates, Phys. Rev. D, 93 (2016)
[81] Gavrilov, SP; Gitman, DM; Shishmarev, AA, Particle scattering and vacuum instability by exponential steps, Phys. Rev. D, 96 (2017)
[82] Chervyakov, A.; Kleinert, H., Exact pair production rate for a smooth potential step, Phys. Rev. D, 80 (2009)
[83] Chervyakov, A.; Kleinert, H., On electron-positron pair production by a spatially inhomogeneous electric field, Phys. Part. Nucl., 49, 374 (2018)
[84] A. Erdelyi et al. ed., Higher transcendental functions, Bateman manuscript project volume 1, McGraw-Hill, New York, NY, U.S.A. (1953). · Zbl 0051.30303
[85] F. W. J. Olver, Asymptotics and special functions, A. K. Peters, Wellesley, (1997). · Zbl 0982.41018
[86] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST handbook of mathematical functions, Cambridge University Press, New York, NY, U.S.A. (2010). · Zbl 1198.00002
[87] Gies, H.; Torgrimsson, G., Critical Schwinger pair production, Phys. Rev. Lett., 116 (2016)
[88] Gies, H.; Torgrimsson, G., Critical Schwinger pair production II — universality in the deeply critical regime, Phys. Rev. D, 95 (2017)
[89] Allen, RC, Study of electron-neutrino electron elastic scattering at LAMPF, Phys. Rev. D, 47, 11 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.