×

Crystal structures for symmetric Grothendieck polynomials. (English) Zbl 1472.05152

Summary: The symmetric Grothendieck polynomials representing Schubert classes in the K theory of Grassmannians are generating functions for semistandard set-valued tableaux. We construct a type \(A_n\) crystal structure on these tableaux. This crystal yields a new combinatorial formula for decomposing symmetric Grothendieck polynomials into Schur polynomials. For single-columns and single-rows, we give a new combinatorial interpretation of Lascoux polynomials (K-analogs of Demazure characters) by constructing a K-theoretic analog of crystals with an appropriate analog of a Demazure crystal. We relate our crystal structure to combinatorial models using excited Young diagrams, Gelfand-Tsetlin patterns via the 5-vertex model, and biwords via Hecke insertion to compute symmetric Grothendieck polynomials.

MSC:

05E10 Combinatorial aspects of representation theory
05E05 Symmetric functions and generalizations
14M15 Grassmannians, Schubert varieties, flag manifolds
14N15 Classical problems, Schubert calculus
17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)

References:

[1] S. Assaf, A combinatorial realization of Schur-Weyl duality via crystal graphs and dual equivalence graphs, in: 20th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), Discrete Math. Theor. Comput. Sci. Proc. AS (2008), pp. 141-152. · Zbl 1393.05281
[2] Assaf, S.; Schilling, A., A Demazure crystal construction for Schubert polynomials, Algebr. Combinatorics, 1, 2, 225-247 (2018) · Zbl 1390.14162 · doi:10.5802/alco.13
[3] Assaf, S.; Searles, D., Kohnert tableaux and a lifting of quasi-Schur functions, J. Combin. Theory Ser. A, 156, 85-118 (2018) · Zbl 1381.05084 · doi:10.1016/j.jcta.2018.01.001
[4] Benkart, G.; Sottile, F.; Stroomer, J., Tableau switching: algorithms and applications, J. Combin. Theory Ser. A, 76, 1, 11-43 (1996) · Zbl 0858.05099 · doi:10.1006/jcta.1996.0086
[5] Björner, A.; Brenti, F., Combinatorics of Coxeter Groups, Graduate Texts in Mathematics (2005), New York: Springer, New York · Zbl 1110.05001
[6] Bloom, J.; Pechenik, O.; Saracino, D., Proofs and generalizations of a homomesy conjecture of Propp and Roby, Discrete Math., 339, 1, 194-206 (2016) · Zbl 1322.05136 · doi:10.1016/j.disc.2015.08.011
[7] Bressler, P.; Evens, S., The Schubert calculus, braid relations, and generalized cohomology, Trans. Amer. Math. Soc., 317, 2, 799-811 (1990) · Zbl 0685.55004 · doi:10.1090/S0002-9947-1990-0968883-2
[8] B. Brubaker, D. Bump, G. Chinta, S. Friedberg, P. E. Gunnells, Metaplectic ice, in: Multiple Dirichlet Series, L-functions and Automorphic Forms, Progr. Math., Vol. 300, Birkhäuser/Springer, New York, 2012, pp. 65-92. · Zbl 1257.11001
[9] Brubaker, B.; Bump, D.; Friedberg, S., Schur polynomials and the Yang-Baxter equation, Comm. Math. Phys., 308, 2, 281-301 (2011) · Zbl 1232.05234 · doi:10.1007/s00220-011-1345-3
[10] Buch, AS, A Littlewood-Richardson rule for the K-theory of Grassmannians, Acta Math., 189, 1, 37-78 (2002) · Zbl 1090.14015 · doi:10.1007/BF02392644
[11] Buch, AS; Kresch, A.; Shimozono, M.; Tamvakis, H.; Yong, A., Stable Grothendieck polynomials and K-theoretic factor sequences, Math. Ann., 340, 2, 359-382 (2008) · Zbl 1157.14036 · doi:10.1007/s00208-007-0155-6
[12] Buch, AS; Samuel, MJ, K-theory of minuscule varieties, J. Reine Angew. Math., 719, 133-171 (2016) · Zbl 1431.19001
[13] Bump, D.; Schilling, A., Crystal Bases: Representations and Combinatorics (2017), Hackensack, NJ: World Scientific Publishing Co., Hackensack, NJ · Zbl 1440.17001 · doi:10.1142/9876
[14] Chmutov, M.; Glick, M.; Pylyavskyy, P., The Berenstein-Kirillov group and cactus groups, J. Comb. Algebra, 4, 2, 111-140 (2020) · Zbl 1446.05091 · doi:10.4171/JCA/36
[15] Davis, MW, The Geometry and Topology of Coxeter Groups, London Mathematical Society Monographs Series (2008), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1142.20020
[16] Demazure, M., Une nouvelle formule des caractères, Bull. Sci. Math., 98, 3, 163-172 (1974) · Zbl 0365.17005
[17] Edelman, P.; Greene, C., Balanced tableaux, Adv. in Math., 63, 1, 42-99 (1987) · Zbl 0616.05005 · doi:10.1016/0001-8708(87)90063-6
[18] Fomin, S.; Greene, C., Noncommutative Schur functions and their applications, Discrete Math., 193, 1-3, 179-200 (1998) · Zbl 1011.05062 · doi:10.1016/S0012-365X(98)00140-X
[19] Fomin, S.; Kirillov, AN, Grothendieck polynomials and the Yang-Baxter equation, in: Formal Power Series and Algebraic Combinatorics/Séries Formelles et Combinatoire Algébrique, 183-189 (1994), Piscataway, NJ: DIMACS, Piscataway, NJ
[20] Fulton, W., Young Tableaux: With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0878.14034
[21] C. Gaetz, M. Mastrianni, R. Patrias, H. Peck, C. Robichaux, D. Schwein, K. Y. Tam, K-Knuth equivalence for increasing tableaux, Electron. J. Combin. 23 (2016), no. 1, Paper 1.40. · Zbl 1332.05148
[22] Galashin, P., A Littlewood-Richardson rule for dual stable Grothendieck polynomials, J. Combin. Theory Ser. A, 151, 23-35 (2017) · Zbl 1366.05116 · doi:10.1016/j.jcta.2017.04.001
[23] M. Gillespie, Variations on a theme of Schubert calculus, in: Recent Trends in Algebraic Combinatorics, Assoc. Women Math. Ser., Vol. 16, Springer, Cham, 2019, pp. 115-158. · Zbl 1410.14044
[24] Gorbounov, V.; Korff, C., Quantum integrability and generalised quantum Schubert calculus, Adv. Math., 313, 282-356 (2017) · Zbl 1386.14181 · doi:10.1016/j.aim.2017.03.030
[25] Graham, W.; Kreiman, V., Excited Young diagrams, equivariant K-theory, and Schubert varieties, Trans. Amer. Math. Soc., 367, 9, 6597-6645 (2015) · Zbl 1317.05187 · doi:10.1090/S0002-9947-2015-06288-6
[26] Haiman, MD, Dual equivalence with applications, including a conjecture of Proctor, Discrete Math., 99, 1-3, 79-113 (1992) · Zbl 0760.05093 · doi:10.1016/0012-365X(92)90368-P
[27] Hudson, T., A Thom-Porteous formula for connective K-theory using algebraic cobordism, J. K-Theory, 14, 2, 343-369 (2014) · Zbl 1314.14015 · doi:10.1017/is014005031jkt266
[28] Humphreys, JE, Reection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics (1990), Cambridge: Cambridge University Press, Cambridge · Zbl 0725.20028 · doi:10.1017/CBO9780511623646
[29] T. Ikeda, S. Iwao, T. Maeno, Peterson isomorphism in K-theory and relativistic Toda lattice, Int. Math. Res. Not. (to appear, 2018).
[30] Ikeda, T.; Naruse, H., Excited Young diagrams and equivariant Schubert calculus, Trans. Amer. Math. Soc., 361, 10, 5193-5221 (2009) · Zbl 1229.05287 · doi:10.1090/S0002-9947-09-04879-X
[31] Ikeda, T.; Naruse, H., K-theoretic analogues of factorial Schur P- and Q-functions, Adv. Math., 243, 22-66 (2013) · Zbl 1278.05240 · doi:10.1016/j.aim.2013.04.014
[32] Ikeda, T.; Shimazaki, T., A proof of K-theoretic Littlewood-Richardson rules by Bender-Knuth-type involutions, Math. Res. Lett., 21, 2, 333-339 (2014) · Zbl 1301.05358 · doi:10.4310/MRL.2014.v21.n2.a10
[33] Kaliszewski, R.; Morse, J., Colorful combinatorics and Macdonald polynomials, European J. Combin., 81, 354-377 (2019) · Zbl 1420.05180 · doi:10.1016/j.ejc.2019.05.006
[34] Kane, R., Reection Groups and Invariant Theory, CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC (2001), New York: Springer-Verlag, New York · Zbl 0986.20038
[35] Kashiwara, M., Crystalizing the q-analogue of universal enveloping algebras, Comm. Math. Phys., 133, 2, 249-260 (1990) · Zbl 0724.17009 · doi:10.1007/BF02097367
[36] Kashiwara, M., On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J., 63, 2, 465-516 (1991) · Zbl 0739.17005 · doi:10.1215/S0012-7094-91-06321-0
[37] Kashiwara, M., The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J., 71, 3, 839-858 (1993) · Zbl 0794.17008 · doi:10.1215/S0012-7094-93-07131-1
[38] A. N. Kirillov, Notes on Schubert, Grothendieck and key polynomials, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper no. 034. · Zbl 1334.05176
[39] Kleiman, SL; Laksov, D., Schubert calculus, Amer. Math. Monthly, 79, 1061-1082 (1972) · Zbl 0272.14016 · doi:10.1080/00029890.1972.11993188
[40] Knutson, A.; Miller, E.; Yong, A., Gröbner geometry of vertex decompositions and of agged tableaux, J. Reine Angew. Math., 630, 1-31 (2009) · Zbl 1169.14033 · doi:10.1515/CRELLE.2009.033
[41] A. Knutson, A. Yong, A formula for K-theory truncation Schubert calculus, Int. Math. Res. Not. 2004, no. 70, 3741-3756. · Zbl 1072.14071
[42] A. Kohnert, Weintrauben, Polynome, Tableaux, Dissertation, Universität Bayreuth, Bayreuth, 1990, Bayreuth. Math. Schr. (1991), no. 38, 1-97. · Zbl 0755.05095
[43] V. Kreiman, Schubert classes in the equivariant K-theory and equivariant cohomology of the Grassmannian, arXiv:0512204 (2005).
[44] Lam, T., Affine Stanley symmetric functions, Amer. J. Math., 128, 6, 1553-1586 (2006) · Zbl 1107.05095 · doi:10.1353/ajm.2006.0045
[45] T. Lam, P. Pylyavskyy, Combinatorial Hopf algebras and K-homology of Grassmannians, Int. Math. Res. Not. IMRN, 2007, no. 24, Art. ID rnm125. · Zbl 1134.16017
[46] Lam, T.; Schilling, A.; Shimozono, M., K-theory Schubert calculus of the affine Grassmannian, Compos. Math., 146, 4, 811-852 (2010) · Zbl 1256.14056 · doi:10.1112/S0010437X09004539
[47] A. Lascoux, Transition on Grothendieck polynomials, in: Physics and Combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, pp. 164-179. · Zbl 1052.14059
[48] A. Lascoux, B. Leclerc, J.-Y. Thibon, The plactic monoid, in: Algebraic Combinatorics on Words, edited by M. Lothaire, Cambridge University Press, Cambridge, 2002.
[49] Lascoux, A.; Schützenberger, M-P, Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math., 295, 11, 629-633 (1982) · Zbl 0542.14030
[50] A. Lascoux, M.-P. Schützenberger, Symmetry and ag manifolds, in: Invariant Theory (Montecatini, 1982), Lecture Notes in Math., Vol. 996, Springer, Berlin, 1983, pp. 118-144. · Zbl 0542.14031
[51] A. Lascoux, M.-P. Schützenberger, Keys & standard bases, in: Invariant Theory and Tableaux (Minneapolis, MN, 1988), IMA Vol. Math. Appl., Vol. 19, Springer, New York, 1990, pp. 125-144. · Zbl 0815.20013
[52] Lenart, C., Combinatorial aspects of the K-theory of Grassmannians, Ann. Comb., 4, 1, 67-82 (2000) · Zbl 0958.05128 · doi:10.1007/PL00001276
[53] Lenart, C., On the combinatorics of crystal graphs. I. Lusztig’s involution, Adv. Math., 211, 1, 204-243 (2007) · Zbl 1129.05058 · doi:10.1016/j.aim.2006.08.002
[54] Li, H.; Morse, J.; Shields, P., Structure constants for K-theory of Grassmannians, revisited, J. Combin. Theory Ser. A, 144, 306-325 (2016) · Zbl 1343.05165 · doi:10.1016/j.jcta.2016.06.016
[55] Littelmann, P., Crystal graphs and Young tableaux, J. Algebra, 175, 1, 65-87 (1995) · Zbl 0831.17004 · doi:10.1006/jabr.1995.1175
[56] Lorca Espiro, J.; Volk, L., Crystals from 5-vertex ice models, J. Lie Theory, 28, 4, 1119-1136 (2018) · Zbl 1448.17018
[57] Mason, S., An explicit construction of type A Demazure atoms, J. Algebraic Combin., 29, 3, 295-313 (2009) · Zbl 1210.05175 · doi:10.1007/s10801-008-0133-4
[58] Matsumoto, H., Générateurs et relations des groupes de Weyl généralisés, C. R. Acad. Sci. Paris, 258, 3419-3422 (1964) · Zbl 0128.25202
[59] C. Monical, Set-valued skyline fillings, arXiv:1611.08777 (2016).
[60] C. Monical, O. Pechenik, T. Scrimshaw, SAGEMATH code, https://drive.google.com/file/d/1g-cLR3ZatHy5Rc4S9ImuW44CQj1COKTc/view?usp=sharing(2018).
[61] C. Monical, O. Pechenik, D. Searles, Polynomials from combinatorial K-theory, Canad. J. Math. (to appear, 2019), doi:10.4153/S0008414X19000464. · Zbl 1507.05102
[62] J. Morse, J. Pan, W. Poh, A. Schilling, A crystal on decreasing factorizations in the 0-Hecke monoid, Electron. J. Combin. 27 (2020), no. 2, Research Paper 29. · Zbl 1441.05237
[63] J. Morse, A. Schilling, Crystal approach to affine Schubert calculus, Int. Math. Res. Not. IMRN 2016, no. 8, 2239-2294. · Zbl 1404.14057
[64] K. Motegi, K. Sakai, Vertex models, TASEP and Grothendieck polynomials, J. Phys. A 46 (2013), no. 35, 355201. · Zbl 1278.82042
[65] K. Motegi, K. Sakai, K-theoretic boson-fermion correspondence and melting crystals, J. Phys. A 47 (2014), no. 44, 445202. · Zbl 1310.82049
[66] Patrias, R.; Pylyavskyy, P., Combinatorics of K-theory via a K-theoretic Poirier- Reutenauer bialgebra, Discrete Math., 339, 3, 1095-1115 (2016) · Zbl 1328.05193 · doi:10.1016/j.disc.2015.10.044
[67] O. Pechenik, K-Theoretic Schubert Calculus and Applications, Thesis (Ph.D.)-University of Illinois at Urbana-Champaign, ProQuest LLC, Ann Arbor, MI, 2016.
[68] O. Pechenik, T. Scrimshaw, K-theoretic crystals for set-valued tableaux of rectangular shape, arXiv:1904.09674 (2019).
[69] O. Pechenik, D. Searles, Decompositions of Grothendieck polynomials, Int. Math. Res. Not. IMRN 2019, no. 10, 3214-3241. · Zbl 1441.05228
[70] O. Pechenik, A. Yong, Equivariant K-theory of Grassmannians, Forum Math. Pi 5 (2017), no. e3. · Zbl 1369.14060
[71] Pechenik, O.; Yong, A., Genomic tableaux, J. Algebraic Combin., 45, 3, 649-685 (2017) · Zbl 1362.05134 · doi:10.1007/s10801-016-0720-8
[72] Pylyavskyy, P.; Yang, J., Puzzles in K-homology of Grassmannians, Pacific J. Math., 303, 2, 703-727 (2019) · Zbl 1434.05155 · doi:10.2140/pjm.2019.303.703
[73] Reiner, V.; Shimozono, M., Key polynomials and a flagged Littlewood-Richardson rule, J. Combin. Theory Ser. A, 70, 1, 107-143 (1995) · Zbl 0819.05058 · doi:10.1016/0097-3165(95)90083-7
[74] Reiner, V.; Tenner, BE; Yong, A., Poset edge densities, nearly reduced words, and barely set-valued tableaux, J. Combin. Theory Ser. A, 158, 66-125 (2018) · Zbl 1391.05269 · doi:10.1016/j.jcta.2018.03.010
[75] C. Ross, A. Yong, Combinatorial rules for three bases of polynomials, Sém. Lothar. Combin. 74 (2015), Art. B74a. · Zbl 1328.05200
[76] The Sage-Combinat community, Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, http://combinat.sagemath.org (2008).
[77] The Sage Developers, Sage Mathematics Software (Version 8:2), http://www.sagemath.org (2018).
[78] H. Schubert, Kalkül der abzählenden Geometrie, reprint of the 1879 original, with an introduction by S. L. Kleiman, Springer-Verlag, Berlin, 1979.
[79] Schützenberger, MP, Promotion des morphismes d’ensembles ordonnés, Discrete Math., 2, 73-94 (1972) · Zbl 0279.06001 · doi:10.1016/0012-365X(72)90062-3
[80] Shimozono, M., Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties, J. Algebraic Combin., 15, 2, 151-187 (2002) · Zbl 1106.17305 · doi:10.1023/A:1013894920862
[81] Stanley, RP, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin., 5, 4, 359-372 (1984) · Zbl 0587.20002 · doi:10.1016/S0195-6698(84)80039-6
[82] R. P. Stanley, Enumerative Combinatorics Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1999. · Zbl 0928.05001
[83] R. P. Stanley, Promotion and evacuation, Electron. J. Combin. 16 (2009), no. 2, Research Paper 9. · Zbl 1169.06002
[84] Stembridge, JR, A local characterization of simply-laced crystals, Trans. Amer. Math. Soc., 355, 12, 4807-4823 (2003) · Zbl 1047.17007 · doi:10.1090/S0002-9947-03-03042-3
[85] Thomas, H.; Yong, A., A jeu de taquin theory for increasing tableaux, with applications to Ktheoretic Schubert calculus, Algebra Number Theory, 3, 121-148 (2009) · Zbl 1229.05285 · doi:10.2140/ant.2009.3.121
[86] Thomas, H.; Yong, A., Longest increasing subsequences, Plancherel-type measure and the Hecke insertion algorithm, Adv. in Appl. Math., 46, 1-4, 610-642 (2011) · Zbl 1227.05262 · doi:10.1016/j.aam.2009.07.005
[87] Thomas, H.; Yong, A., Equivariant Schubert calculus and jeu de taquin, Ann. Inst. Fourier (Grenoble), 68, 1, 275-318 (2018) · Zbl 1400.05273 · doi:10.5802/aif.3161
[88] R. Vakil, A geometric Littlewood-Richardson rule, appendix A written with A. Knutson, Ann. of Math. (2) 164 (2006), no. 2, 371-421. · Zbl 1163.05337
[89] M. A. A. van Leeuwen, The Littlewood-Richardson rule, and related combinatorics, in: Interaction of Combinatorics and Representation Theory, MSJ Mem., Vol. 11, Math. Soc. Japan, Tokyo, 2001, pp. 95-145. · Zbl 0991.05101
[90] Wheeler, M.; Zinn-Justin, P., Littlewood-Richardson coeficients for Grothendieck polynomials from integrability, J. Reine Angew. Math., 757, 159-195 (2019) · Zbl 1428.05323 · doi:10.1515/crelle-2017-0033
[91] Yeliussizov, D., Symmetric Grothendieck polynomials, skew Cauchy identities, and dual filtered Young graphs, J. Combin. Theory Ser. A, 161, 453-485 (2019) · Zbl 1400.05264 · doi:10.1016/j.jcta.2018.09.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.