×

Lamplighter random walks on fractals. (English) Zbl 1395.60080

The authors use the book “Analysis on fractals” by J. Kigami [Cambridge: Cambridge University Press (2001; Zbl 0998.28004)] to study the lamplighter random walks on fractals.
Authors’ abstract: We consider on-diagonal heat kernel estimates and the laws of the iterated logarithm for a switch-walk-switch random walk on a lamplighter graph under the condition that the random walk on the underlying graph enjoys sub-Gaussian heat kernel estimates.

MSC:

60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60J35 Transition functions, generators and resolvents
60J55 Local time and additive functionals

Citations:

Zbl 0998.28004

References:

[1] Barlow, M.T.: Diffusions on fractals. In: Lecture Notes in Mathematics, vol. 1690, Ecole d’été de probabilités de Saint-Flour XXV, 1995. Springer, New York (1998) · Zbl 0532.60009
[2] Barlow, M.T.: Which values of the volume growth and escape time exponent are possible for a graph? Rev. Mat. Iberoamericana 20(1), 1-31 (2004) · Zbl 1051.60071 · doi:10.4171/RMI/378
[3] Barlow, M.T., Bass, R.F.: Random walks on graphical Sierpinski carpets. In: Random Walks and Discrete Potential Theory (Cortona, 1997), 26-55. Sympos. Math., XXXIX, Cambridge University Press, Cambridge (1997) · Zbl 0958.60045
[4] Barlow, M.T., Coulhon, T., Kumagai, T.: Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs. Commun. Pure Appl. Math. 58(12), 1642-1677 (2005) · Zbl 1083.60060 · doi:10.1002/cpa.20091
[5] Bass, R.F., Kumagai, T.: Laws of the iterated logarithm for some symmetric diffusion processes. Osaka J. Math. 37(3), 625-650 (2000) · Zbl 0972.60007
[6] Coulhon, T., Grigor’yan, A., Pittet, C.: A geometric approach to on-diagonal heat kernel lower bounds on groups. Ann. Inst. Fourier (Grenoble) 51(6), 1763-1827 (2001) · Zbl 1137.58307 · doi:10.5802/aif.1874
[7] Croydon, D.A.: Moduli of continuity of local times of random walks on graphs in terms of the resistance metric. Trans. Lond. Math. Soc. 2(1), 57-79 (2015) · Zbl 1327.05307 · doi:10.1112/tlms/tlv003
[8] Dvoretzky, A., Erdős, P.: Some problems on random walk in space. In: Proceedings of Second Berkeley Symposium on Mathematical Statistics and Probability. University of California Press (1951), pp. 353-367 · Zbl 0044.14001
[9] Gibson, L.R.: The mass of sites visited by a random walk on an infinite graph. Electron. J. Probab. 13, 1257-1282 (2008) · Zbl 1191.60059 · doi:10.1214/EJP.v13-531
[10] Jones, O.D.: Transition probabilities for the simple random walk on the Sierpiński graph. Stoch. Process. Appl. 61(1), 45-69 (1996) · Zbl 0853.60058 · doi:10.1016/0304-4149(95)00074-7
[11] Kigami, J.: Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143. Cambridge University Press, Cambridge (2001) · Zbl 0998.28004 · doi:10.1017/CBO9780511470943
[12] Kim, P., Kumagai, T., Wang, J.: Laws of the Iterated Logarithm for Symmetric Jump Processes. Bernoulli (to appear). arXiv:1504.06210v2 · Zbl 1407.60114
[13] Kumagai, T.: Random walks on disordered media and their scaling limits. In: Lecture Notes in Mathematics, vol. 2101, Ecole d’été de probabilités de Saint-Flour XL, 2010. Springer, New York (2014) · Zbl 1083.60060
[14] Okamura, K.: On the range of random walk on graphs satisfying a uniform condition. ALEA Lat. Am. J. Probab. Math. Stat. 11(1), 341-357 (2014) · Zbl 1296.05179
[15] Pittet, C., Saloff-Coste, L.: Amenable groups, isoperimetric profiles and random walks. In: Geometric Group Theory Down Under (Canberra, 1996), 293-316. de Gruyter, Berlin (1999) · Zbl 0934.43001
[16] Pittet, C., Saloff-Coste, L.: A survey on the relationships between volume growth, isoperimetry, and the behavior of simple random walk on Cayley graphs, with examples. Preprint 2001. http://www.math.cornell.edu/ lsc/articles.html · Zbl 1222.60051
[17] Rau, C.: Existence of graphs with sub exponential transitions probability decay and applications. Bull. Soc. Math. Fr. 138(4), 491-542 (2010) · Zbl 1222.60051 · doi:10.24033/bsmf.2595
[18] Revelle, D.: Rate of escape of random walks on wreath products and related groups. Ann. Probab. 31(4), 1917-1934 (2003) · Zbl 1051.60047 · doi:10.1214/aop/1068646371
[19] Varopoulos, N.: Random walks on soluble groups. Bull. Sci. Math. 107, 337-344 (1983) · Zbl 0532.60009
[20] Varopoulos, N.: A potential theoretic property of soluble groups. Bull. Sci. Math. 108, 263-273 (1984) · Zbl 0546.60008
[21] Woess, W.: Random walks on infinite graphs and groups. Cambridge Tracts in Mathematics, vol. 138. Cambridge University Press, Cambridge (2000) · Zbl 0951.60002 · doi:10.1017/CBO9780511470967
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.