×

A positivity-preserving adaptive-order finite-difference scheme for GRMHD. (English) Zbl 1533.83041

Summary: We present an adaptive-order positivity-preserving conservative finite-difference scheme that allows a high-order solution away from shocks and discontinuities while guaranteeing positivity and robustness at discontinuities. This is achieved by monitoring the relative power in the highest mode of the reconstructed polynomial and reducing the order when the polynomial series no longer converges. Our approach is similar to the multidimensional optimal order detection strategy, but differs in several ways. The approach is a priori and so does not require retaking a time step. It can also readily be combined with positivity-preserving flux limiters that have gained significant traction in computational astrophysics and numerical relativity. This combination ultimately guarantees a physical solution both during reconstruction and time stepping. We demonstrate the capabilities of the method using a standard suite of very challenging 1d, 2d, and 3d general relativistic magnetohydrodynamics test problems.
{© 2023 IOP Publishing Ltd}

MSC:

83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83-08 Computational methods for problems pertaining to relativity and gravitational theory

References:

[1] Godunov, S. K., A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb. (N.S.), 47, 271-306 (1959) · Zbl 0171.46204
[2] Chakravarthy, S.; Harten, A.; Osher, S., Essentially non-oscillatory shock-capturing schemes of arbitrarily-high accuracy, p 339 (1986)
[3] Harten, A.; Osher, S.; Engquist, B.; Chakravarthy, S. R., Some results on uniformly high-order accurate essentially nonoscillatory schemes, Appl. Numer. Math., 2, 347-77 (1986) · Zbl 0627.65101 · doi:10.1016/0168-9274(86)90039-5
[4] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S. R., Uniformly high order accurate essentially non-oscillatory schemes, III, J. Comput. Phys., 71, 231-303 (1987) · Zbl 0652.65067 · doi:10.1016/0021-9991(87)90031-3
[5] Shu, C-W; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439-71 (1988) · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[6] Shu, C-W; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. Comput. Phys., 83, 32-78 (1989) · Zbl 0674.65061 · doi:10.1016/0021-9991(89)90222-2
[7] Jiang, G-S; Shu, C-W, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-28 (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[8] Liu, X-D; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200-12 (1994) · Zbl 0811.65076 · doi:10.1006/jcph.1994.1187
[9] Deng, X.; Zhang, H., Developing high-order weighted compact nonlinear schemes, J. Comput. Phys., 165, 22-44 (2000) · Zbl 0988.76060 · doi:10.1006/jcph.2000.6594
[10] Chiavaroli, S.; Newport, D.; Luca Morini, G.; Barrot Lattes, C.; Baldas, L.; Colin, S’phane, Computational analysis of characteristics and mach number effects on noise emission from ideally expanded highly supersonic free-jet (2007)
[11] Zhang, S.; Jiang, S.; Shu, C-W, Development of nonlinear weighted compact schemes with increasingly higher order accuracy, J. Comput. Phys., 227, 7294-321 (2008) · Zbl 1152.65094 · doi:10.1016/j.jcp.2008.04.012
[12] Radice, D.; Rezzolla, L.; Galeazzi, F., Beyond second-order convergence in simulations of binary neutron stars in full general-relativity, Mon. Not. R. Astron. Soc., 437, L46-L50 (2014) · doi:10.1093/mnrasl/slt137
[13] Radice, D.; Rezzolla, L.; Galeazzi, F., High-order fully general-relativistic hydrodynamics: new approaches and tests, Class. Quantum Grav., 31 (2014) · Zbl 1291.83092 · doi:10.1088/0264-9381/31/7/075012
[14] Most, E. R.; Jens Papenfort, L.; Rezzolla, L., Beyond second-order convergence in simulations of magnetized binary neutron stars with realistic microphysics, Mon. Not. R. Astron. Soc., 490, 3588-600 (2019) · doi:10.1093/mnras/stz2809
[15] Raithel, C. A.; Paschalidis, V., Improving the convergence order of binary neutron star merger simulations in the Baumgarte- Shapiro-Shibata-Nakamura formulation, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.023015
[16] Cipolletta, F.; Vijay Kalinani, J.; Giangrandi, E.; Giacomazzo, B.; Ciolfi, R.; Sala, L.; Giudici, B., Spritz: general relativistic magnetohydrodynamics with neutrinos, Class. Quantum Grav., 38 (2021) · Zbl 1481.85002 · doi:10.1088/1361-6382/abebb7
[17] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (2009), Springer · Zbl 1227.76006
[18] Nonomura, T.; Fujii, K., Robust explicit formulation of weighted compact nonlinear scheme, Comput. Fluids, 85, 8-18 (2013) · Zbl 1290.76105 · doi:10.1016/j.compfluid.2012.09.001
[19] Freret, L.; Ivan, L.; De Sterck, H.; Groth, C. P., A high-order finite-volume method with anisotropic AMR for ideal MHD flows, pp 2017-0845 (2017)
[20] Zanotti, O.; Dumbser, M., Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables, Comput. Astrophys. Cosmol., 3, 1 (2016) · doi:10.1186/s40668-015-0014-x
[21] Ivan, L.; Groth, C. P T., High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows, J. Comput. Phys., 257, 830-62 (2014) · Zbl 1349.76341 · doi:10.1016/j.jcp.2013.09.045
[22] Hu, X. Y.; Adams, N. A.; Shu, C-W, Positivity-preserving method for high-order conservative schemes solving compressible Euler equations, J. Comput. Phys., 242, 169-80 (2013) · Zbl 1311.76088 · doi:10.1016/j.jcp.2013.01.024
[23] Balsara, D. S., Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231, 7504-17 (2012) · doi:10.1016/j.jcp.2012.01.032
[24] Balsara, D. S.; Garain, S.; Shu, C-W, An efficient class of WENO schemes with adaptive order, J. Comput. Phys., 326, 780-804 (2016) · Zbl 1422.65146 · doi:10.1016/j.jcp.2016.09.009
[25] Sun, Di; Qu, F.; Yan, C., An efficient adaptive high-order scheme based on the WENO process, Comput. Fluids, 140, 81-96 (2016) · Zbl 1390.76630 · doi:10.1016/j.compfluid.2016.09.011
[26] Semplice, M.; Visconti, G., Efficient implementation of adaptive order reconstructions, J. Sci. Comput., 83, 1-27 (2020) · Zbl 1432.65125 · doi:10.1007/s10915-020-01156-6
[27] Guercilena, F.; Radice, D.; Rezzolla, L., Entropy-limited hydrodynamics: a novel approach to relativistic hydrodynamics, Comput. Astrophys. Cosmol., 4, 3 (2017) · doi:10.1186/s40668-017-0022-0
[28] Doulis, G.; Atteneder, F.; Bernuzzi, S.; Brügmann, B., Entropy-limited higher-order central scheme for neutron star merger simulations, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.024001
[29] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (MOOD), J. Comput. Phys., 230, 4028-50 (2011) · Zbl 1218.65091 · doi:10.1016/j.jcp.2011.02.026
[30] Diot, S.; Clain, S.; Loubère, R., Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials, Comput. Fluids, 64, 43-63 (2012) · Zbl 1365.76149 · doi:10.1016/j.compfluid.2012.05.004
[31] Diot, S.; Loubère, R.; Clain, S., The multidimensional optimal order detection method in the three-dimensional case: very high-order finite volume method for hyperbolic systems, Int. J. Numer. Methods Fluids, 73, 362-92 (2013) · Zbl 1455.65147 · doi:10.1002/fld.3804
[32] Deppe, N.; Hébert, F.; Kidder, L. E.; Teukolsky, S. A., A high-order shock capturing discontinuous Galerkin-finite difference hybrid method for GRMHD, Class. Quantum Grav., 39 (2022) · Zbl 1507.85009 · doi:10.1088/1361-6382/ac8864
[33] Suresh, A.; Huynh, H. T., Accurate monotonicity-preserving schemes with Runge-Kutta time stepping, J. Comput. Phys., 136, 83-99 (1997) · Zbl 0886.65099 · doi:10.1006/jcph.1997.5745
[34] Persson, P-O; Peraire, J., Sub-cell shock capturing for discontinuous Galerkin methods, pp 1-13 (2006), American Institute of Aeronautics and Astronautics, Inc
[35] Gottlieb, D.; Orszag, S. A., Numerical Analysis of Spectral Methods (1977), SIAM · Zbl 0412.65058
[36] Van Leer, B., Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection, J. Comput. Phys., 23, 276-99 (1977) · Zbl 0339.76056 · doi:10.1016/0021-9991(77)90095-X
[37] Zhang, X.; Shu, C-W, Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments, Proc. R. Soc. A, 467, 2752-76 (2011) · Zbl 1222.65107 · doi:10.1098/rspa.2011.0153
[38] Zhang, X.; Shu, C-W, On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229, 8918-34 (2010) · Zbl 1282.76128 · doi:10.1016/j.jcp.2010.08.016
[39] Zhang, X.; Shu, C-W, Positivity-preserving high order finite difference WENO schemes for compressible Euler equations, J. Comput. Phys., 231, 2245-58 (2012) · Zbl 1426.76493 · doi:10.1016/j.jcp.2011.11.020
[40] Christlieb, A. J.; Liu, Y.; Tang, Q.; Xu, Z., Positivity-preserving finite difference weighted ENO schemes with constrained transport for ideal magnetohydrodynamic equations, SIAM J. Sci. Comput., 37, A1825-45 (2015) · Zbl 1329.76225 · doi:10.1137/140971208
[41] Wu, K.; Shu, C-W, A provably positive discontinuous Galerkin method for multidimensional ideal magnetohydrodynamics, SIAM J. Sci. Comput., 40, B1302-29 (2018) · Zbl 1404.65184 · doi:10.1137/18M1168042
[42] Del Zanna, L.; Zanotti, O.; Bucciantini, N.; Londrillo, P., ECHO: an Eulerian conservative high order scheme for general relativistic magnetohydrodynamics and magnetodynamics, Astron. Astrophys., 473, 11-30 (2007) · doi:10.1051/0004-6361:20077093
[43] Chen, Y.; Tóth, G.; Gombosi, T. I., A fifth-order finite difference scheme for hyperbolic equations on block-adaptive curvilinear grids, J. Comput. Phys., 305, 604-21 (2016) · Zbl 1349.65278 · doi:10.1016/j.jcp.2015.11.003
[44] Harten, A.; Lax, P. D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 35-61 (1983) · Zbl 0565.65051 · doi:10.1137/1025002
[45] Deppe, N., Simulating magnetized neutron stars with discontinuous Galerkin methods, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.123031
[46] Antón, L.; Zanotti, O.; Miralles, J. A.; Martí, J. M.; Ibá nez, J. M.; Font, J. A.; Pons, J. A., Numerical 3+1 general relativistic magnetohydrodynamics: a local characteristic approach, Astrophys. J., 637, 296-312 (2006) · doi:10.1086/498238
[47] Font, J. A., Numerical hydrodynamics and magnetohydrodynamics in general relativity, Living Rev. Relativ., 11, 7 (2008) · Zbl 1166.83003 · doi:10.12942/lrr-2008-7
[48] Baumgarte, T. W.; Shapiro, S. L., Numerical Relativity: Solving Einstein’s Equations on the Computer (2010), Cambridge University Press · Zbl 1198.83001
[49] Deppe, Net al.2023SpECTRE (v2023.04.07)Zenododoi:10.5281/zenodo.7809262
[50] Dormand, J. R.; Prince, P. J., Runge-Kutta triples, Comput. Math. Appl., 12, 1007-17 (1986) · Zbl 0618.65059 · doi:10.1016/0898-1221(86)90025-8
[51] Hairer, E., Syvert Norsett and Gerhard Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, vol 8 (1993), Springer · Zbl 0789.65048
[52] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes 3rd Edition: The Art of Scientific Computing (2007), Cambridge University Press · Zbl 1132.65001
[53] Balsara, D., Total variation diminishing scheme for relativistic magnetohydrodynamics, Astrophys. J. Suppl. Ser., 132, 83-101 (2001) · doi:10.1086/318941
[54] Komissarov, S. S., A Godunov-type scheme for relativistic magnetohydrodynamics, Mon. Not. R. Astron. Soc., 303, 343-66 (1999) · doi:10.1046/j.1365-8711.1999.02244.x
[55] Leismann, T.; Antón, L.; Aloy, M. A.; Müller, E.; Martí, J. M.; Miralles, J. A.; Ibá nez, J. M., Relativistic MHD simulations of extragalactic jets, Astron. Astrophys., 436, 503-26 (2005) · doi:10.1051/0004-6361:20042520
[56] Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O., ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics, Mon. Not. R. Astron. Soc., 477, 4543-64 (2018) · doi:10.1093/mnras/sty734
[57] Harten, A., On a class of high resolution total-variation-stable finite-difference schemes, SIAM J. Numer. Anal., 21, 1-23 (1984) · Zbl 0547.65062 · doi:10.1137/0721001
[58] Balsara, D. S.; Spicer, D. S., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 270-92 (1999) · Zbl 0936.76051 · doi:10.1006/jcph.1998.6153
[59] Tóth, G., The \(####\) constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys., 161, 605-52 (2000) · Zbl 0980.76051 · doi:10.1006/jcph.2000.6519
[60] Etienne, Z. B.; Tung Liu, Y.; Shapiro, S. L., Relativistic magnetohydrodynamics in dynamical spacetimes: a new adaptive mesh refinement implementation, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.084031
[61] Del Zanna, L.; Bucciantini, N.; Londrillo, P., An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics, Astron. Astrophys., 400, 397-413 (2003) · Zbl 1222.76122 · doi:10.1051/0004-6361:20021641
[62] Richard DeVore, C., Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics, J. Comput. Phys., 92, 142-60 (1991) · Zbl 0716.76056 · doi:10.1016/0021-9991(91)90295-V
[63] Mösta, P.; Mundim, B. C.; Faber, J. A.; Haas, R.; Noble, S. C.; Bode, T.; Löffler, F.; Ott, C. D.; Reisswig, C.; Schnetter, E., GRHydro: a new open source general-relativistic magnetohydrodynamics code for the Einstein toolkit, Class. Quantum Grav., 31 (2014) · Zbl 1287.83004 · doi:10.1088/0264-9381/31/1/015005
[64] Beckwith, K.; Stone, J. M., A second-order Godunov method for multi-dimensional relativistic magnetohydrodynamics, Astrophys. J. Suppl., 193, 6 (2011) · doi:10.1088/0067-0049/193/1/6
[65] Gardiner, T. A.; Stone, J. M., An unsplit Godunov method for ideal MHD via constrained transport, J. Comput. Phys., 205, 509-39 (2005) · Zbl 1087.76536 · doi:10.1016/j.jcp.2004.11.016
[66] Stone, J. M.; Gardiner, T. A.; Teuben, P.; Hawley, J. F.; Simon, J. B., Athena: a new code for astrophysical MHD, Astrophys. J. Suppl., 178, 137-77 (2008) · doi:10.1086/588755
[67] Schaal, K.; Bauer, A.; Chandrashekar, P.; Pakmor, R.; Klingenberg, C.; Springel, V., Astrophysical hydrodynamics with a high-order discontinuous Galerkin scheme and adaptive mesh refinement, Mon. Not. R. Astron. Soc., 453, 4278-300 (2015) · doi:10.1093/mnras/stv1859
[68] Tolman, R. C., Static solutions of Einstein’s field equations for spheres of fluid, Phys. Rev., 55, 364-73 (1939) · JFM 65.1048.02 · doi:10.1103/PhysRev.55.364
[69] Oppenheimer, J. R.; Volkoff, G. M., On massive neutron cores, Phys. Rev., 55, 374-81 (1939) · Zbl 0020.28501 · doi:10.1103/PhysRev.55.374
[70] Cipolletta, F.; Vijay Kalinani, J.; Giacomazzo, B.; Ciolfi, R., Spritz: a new fully general-relativistic magnetohydrodynamic code, Class. Quantum Grav., 37 (2020) · Zbl 1478.85008 · doi:10.1088/1361-6382/ab8be8
[71] Font, J. A.; Stergioulas, N.; Kokkotas, K. D., Nonlinear hydrodynamical evolution of rotating relativistic stars: numerical methods and code tests, Mon. Not. R. Astron. Soc., 313, 678 (2000) · doi:10.1046/j.1365-8711.2000.03254.x
[72] Stergioulas, N.; Font, J. A.; Kokkotas, K. D., Nonlinear evolution of rotating relativistic stars, Nucl. Phys. B, 80, 0724 (2000)
[73] Font, J. A.; Goodale, T.; Iyer, S.; Miller, M.; Rezzolla, L.; Seidel, E.; Stergioulas, N.; Suen, W-M; Tobias, M., Three-dimensional numerical general relativistic hydrodynamics. II. Long-term dynamics of single relativistic stars, Phys. Rev. D, 65 (2002) · doi:10.1103/PhysRevD.65.084024
[74] Cook, G. B.; Shapiro, S. L.; Teukolsky, S. A., Spin-up of a rapidly rotating star by angular momentum loss: effects of general relativity, Astrophys. J., 398, 203 (1992) · doi:10.1086/171849
[75] Cook, G. B.; Shapiro, S. L.; Teukolsky, S. A., Rapidly rotating neutron stars in general relativity: realistic equations of state, Astrophys. J., 424, 823 (1994) · doi:10.1086/173934
[76] Legred, I.; Kim, Y.; Deppe, N.; Chatziioannou, K.; Foucart, F.; Hébert, F.; Kidder, L. E., Simulating neutron stars with a flexible enthalpy-based equation of state parametrization in SpECTRE, Phys. Rev. D, 107 (2023) · doi:10.1103/PhysRevD.107.123017
[77] Kale, L., UIUC-PPL/charm: charm++ (Version 7.0.0), Zenodo (2021) · doi:10.5281/zenodo.5597907
[78] Kale, L. V.; Krishnan, S.; Wilson, G. V.; Lu, P., Charm++: parallel programming with message-driven objects, Parallel Programming Using C++, pp 175-213 (1996), The MIT Press
[79] Iglberger, K.; Hager, G.; Treibig, J.; Rüde, U., High performance smart expression template math libraries, pp 367-73 (2012)
[80] Iglberger, K.; Hager, G.; Treibig, J.; Rüde, U., Expression templates revisited: a performance analysis of current methodologies, SIAM J. Sci. Comput., 34, C42-C69 (2012) · doi:10.1137/110830125
[81] The HDF Group1997-2023Hierarchical data format, version 5(available at: www.hdfgrou p.org/HDF5/)
[82] Galassi, M., GNU Scientific Library Reference Manual (2009), Network Theory Ltd
[83] Beder, Jet al.2009yaml-cpp
[84] Jakob, WRhinelander, JMoldovan, D2017Pybind11-seamless operability between c++11 and python(available at: https://github.com/py bind/pybind11)
[85] Reinecke, M.; Seljebotn, D. S., Libsharp - spherical harmonic transforms revisited, Astron. Astrophys., 554, A112 (2013) · doi:10.1051/0004-6361/201321494
[86] Heinecke, A.; Henry, G.; Hutchinson, M.; Pabst, H., LIBXSMM: accelerating small matrix multiplications by runtime code generation, pp 1-11 (2016), IEEE Press
[87] Hunter, J. D., Matplotlib: a 2D graphics environment, Comput. Sci. Eng., 9, 90-95 (2007) · doi:10.1109/MCSE.2007.55
[88] Caswell, T Aet al.2020Matplotlib/matplotlib: REL: (v3.3.0)Zenododoi:10.5281/zenodo.3948793
[89] Harris, C. R., Array programming with NumPy, Nature, 585, 357-62 (2020) · doi:10.1038/s41586-020-2649-2
[90] Ayachit, U., The Paraview Guide: A Parallel Visualization Application (2015), Kitware, Inc
[91] Ahrens, J.; Geveci, B.; Law, C., Paraview: An End-User Tool for Large-Data Visualization (2005), Elsevier
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.