×

Long-run growth rate in a random multiplicative model. (English) Zbl 1301.82041

Summary: We consider the long-run growth rate of the average value of a random multiplicative process \(x_{i + 1} = a_{i}x_{i}\) where the multipliers \(a_i=1+\rho \exp (\sigma W_i - \frac{1}{2}\sigma ^2 t_i)\) have Markovian dependence given by the exponential of a standard Brownian motion \(W_{i}\). The average value \(\langle x_{n}\rangle\) is given by the grand partition function of a one-dimensional lattice gas with two-body linear attractive interactions placed in a uniform field. We study the Lyapunov exponent \(\lambda =\lim _{n\to \infty } \frac{1}{n}\log \langle x_n\rangle\), at fixed \(\beta = \frac{1}{2} \sigma^2 t_n n\), and show that it is given by the equation of state of the lattice gas in thermodynamical equilibrium. The Lyapunov exponent has discontinuous partial derivatives along a curve in the ({\(\rho\)}, {\(\beta\)}) plane ending at a critical point ({\(\rho_{C}\)}, {\(\beta_{C}\)}) which is related to a phase transition in the equivalent lattice gas. Using the equivalence of the lattice gas with a bosonic system, we obtain the exact solution for the equation of state in the thermodynamical limit \(n \to \infty\).{
©2014 American Institute of Physics}

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
60J65 Brownian motion
76M28 Particle methods and lattice-gas methods
60J05 Discrete-time Markov processes on general state spaces
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B27 Critical phenomena in equilibrium statistical mechanics
68Q80 Cellular automata (computational aspects)
37B15 Dynamical aspects of cellular automata

References:

[1] Kadanoff, L. P., Statistical Physics: Statics, Dynamics and Renormalization (2000) · Zbl 0952.82001
[2] Kesten, H., Random difference equations and renewal theory for products of random matrices, Acta Math., 131, 207 (1973) · Zbl 0291.60029 · doi:10.1007/BF02392040
[3] Lewontin, R. C.; Cohen, D., On population growth in a randomly varying environment, Proc. Natl. Acad. Sci. U.S.A., 62, 4, 1056 (1969) · doi:10.1073/pnas.62.4.1056
[4] Sornette, D., Chaos, fractals, self-organization and disorder: Concepts and Tools, Critical Phenomena in Natural Sciences (2006)
[5] Mitzenmacher, M., A brief history of generative models for power law and log-normal distributions, Internet Math., 1, 226-251 (2004) · Zbl 1063.68526 · doi:10.1080/15427951.2004.10129088
[6] Saichev, A.; Malevergne, Y.; Sornette, D., Lecture Notes in Economics and Mathematical Systems, Theory of Zipf’s law and beyond, 632 (2009)
[7] Goldie, C. M., Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Prob., 1, 126 (1991) · Zbl 0724.60076 · doi:10.1214/aoap/1177005985
[8] Mantegna, R. N.; Stanley, H. E., Introduction to Econophysics: Correlations and Complexity in Finance (1999)
[9] Rachev, S. T., Handbook of Heavy Tailed Distributions in Finance, v.1: Handbooks in Finance (2003)
[10] Ruelle, D., Analyticity properties of the characteristic exponents of random matrix products, Adv. Math., 32, 68-80 (1979) · Zbl 0426.58018 · doi:10.1016/0001-8708(79)90029-X
[11] Cohen, J. E., Long-run growth rates of discrete multiplicative processes in Markovian environments, J. Math. Anal. Appl., 69, 243 (1979) · Zbl 0406.60076 · doi:10.1016/0022-247X(79)90191-4
[12] Roitershtein, A., One-dimensional linear recursions with Markov-dependent coefficients, Ann. Appl. Prob., 17, 572 (2007) · Zbl 1125.60092 · doi:10.1214/105051606000000844
[13] Cohen, J. E.; Newman, C. M., The stability of large random matrices and their products, Ann. Prob., 12, 283-310 (1984) · Zbl 0543.60098 · doi:10.1214/aop/1176993291
[14] Gallavotti, G., Random matrices and Lyapunov coefficients regularity · Zbl 1364.37118
[15] Pirjol, D., Emergence of heavy-tailed distributions in a random multiplicative model driven by a stochastic Gaussian process, J. Stat. Phys., 154, 781-806 (2014) · Zbl 1291.82039 · doi:10.1007/s10955-013-0889-3
[16] Black, F.; Derman, E.; Toy, W., A one-factor model of interest rates and its application to treasury bond options, Fin. Anal. J., 46, 24-32 (1990) · doi:10.2469/faj.v46.n1.33
[17] Gallavotti, G.; Miracle-Sole, S., Statistical mechanics of lattice systems, Commun. Math. Phys., 5, 317 (1967) · Zbl 0154.46501 · doi:10.1007/BF01646445
[18] Ruelle, D., Statistical mechanics of a one-dimensional lattice gas, Commun. Math. Phys., 9, 267-346 (1968) · Zbl 0165.29102 · doi:10.1007/BF01654281
[19] Lebowitz, J. L.; Penrose, O., Rigorous treatment of the van der Waals-Maxwell theory of the liquid-vapor transition, J. Math. Phys., 7, 98 (1966) · Zbl 0938.82520 · doi:10.1063/1.1704821
[20] Hill, T. L., Statistical Mechanics: Principles and Selected Applications (1987) · Zbl 1234.82001
[21] Lieb, E. H.; Seiringer, R.; Solovej, J. P.; Yngvason, J., The quantum-mechanical many body problem: The Bose gas (2005) · Zbl 1113.82007
[22] Dufresne, D., Weak convergence of random growth processes with applications to insurance, Insur.: Math. Econom., 8, 187-201 (1989) · Zbl 0704.62096 · doi:10.1016/0167-6687(89)90056-5
[23] Dufresne, D., The distribution of a perpetuity, with application to risk theory and pension funding, Scand. Actuarial J., 1990, 39-79 (1990) · Zbl 0743.62101 · doi:10.1080/03461238.1990.10413872
[24] Wong, E.; Bellman, R., The construction of a class of stationary Markoff processes, Stochastic Processes in Mathematical Physics and Engineering, 264-276 (1964) · Zbl 0139.34406
[25] Donati-Martin, C.; Ghomrasni, R.; Yor, M., On certain Markov processes attached to exponential functionals of Brownian motion: Applications to Asian options, Rev. Mat. Iberoam., 17, 1, 179-193 (2001) · Zbl 0979.60073 · doi:10.4171/RMI/292
[26] Comtet, A.; Monthus, C.; Yor, M., Exponential functionals of Brownian motion and disordered systems, J. Appl. Prob., 35, 2, 255-271 (1998) · Zbl 0929.60063 · doi:10.1239/jap/1032192845
[27] Biro, T. S.; Jakovác, A., Power-law tails from multiplicative noise, Phys. Rev. Lett., 94, 132302 (2005) · doi:10.1103/PhysRevLett.94.132302
[28] Bormetti, G.; Delpini, D., Exact moment scaling from multiplicative noise, Phys. Rev. E, 81, 032102 (2010) · doi:10.1103/PhysRevE.81.032102
[29] Dyson, F., Existence of a phase transition in a one-dimensional Ising ferromagnet, Commun. Math. Phys., 12, 91 (1969) · Zbl 1306.47082 · doi:10.1007/BF01645907
[30] Gallavotti, G.; Miracle-Sole, S.; Ruelle, D., Absence of phase transitions in one-dimensional systems with hard cores, Phys. Lett. A, 26, 350-351 (1968) · doi:10.1016/0375-9601(68)90367-8
[31] Kac, M.; Uhlenbeck, G. E.; Hemmer, P. C., On the van der Waals theory of the vapor-liquid equilibrium: I. Discussion of a one-dimensional model, J. Math. Phys., 4, 216 (1963) · Zbl 0938.82517 · doi:10.1063/1.1703946
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.