×

On vortex solutions and links between the Weierstrass system and the complex sine-Gordon equations. (English) Zbl 1040.35090

Summary: The connection between the complex sine and sinh-Gordon equations associated with a Weierstrass type system and the possibility of construction of several classes of multivortex solutions is discussed in detail. We perform the Painlevé test and analyse the possibility of deriving the Bäcklund transformation from the singularity analysis of the complex sine-Gordon equation. We make use of the analysis using the known relations for the Painlevé equations to construct explicit formulae in terms of the Umemura polynomials which are \(\tau\)-functions for rational solutions of the third Painlevé equation. New classes of multivortex solutions of a Weierstrass system are obtained through the use of this proposed procedure. Some physical applications are mentioned in the area of the vortex Higgs model when the complex sine-Gordon equation is reduced to coupled Riccati equations.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions

References:

[1] Pohlmeyer, K., Integrable Hamiltonian systems and interactions through quadratic constraints, Commun. Math. Phys, 58, 31-64, 1978
[2] Bobenko, A. I.; Eitner, U., Springer Verlag, 2000, 1753
[3] Makhankov, V. G.; Pashaev, O. K., Integrable Pseudospin Models in Condensed Matter, Sov. Sci. Rev. Math. Phys, 9, 1-152, 1992 · Zbl 0839.35109
[4] Lund, F.; Regge, T., Unified Approach to String and Vortices with Soliton Solutions, Phys. Rev. D14 (1976), 1524-1535; Lund F, Example of a Relativistic, Completely Integrable, Hamiltonian System, Phys. Rev. Lett. 38 (1977), 1175-1178; Lund F, Classically Solvable Field Theory Model, Ann. Phys, 115, 251-268, 1978
[5] Getmanov, B. S., Sov. Phys., Jetp Lett, 25, 132-136, 1977
[6] Zakrzewski, W., Low Dimensional Sigma-Models, 1989, New York: Hilger, New York · Zbl 0787.53072
[7] Kosevich, V. L.; Pitaevskii, L. P., On a Unified Approach to Ginsburg-Landau Type Models, Sov. Phys. JETP 34 (1958), 858-869; Lifshitz E M and Pitaevskii L P, Statistical Physics, Part 2, Pergamon Press, Oxford, 1980; Barashenkov I V and Pelinovsky D E, Exact Vortex Solutions of the Complex Sine-Gordon Theory on the Plane, Phys. Lett. 436 (1998), 117-124; GinzbergV I and Pitaevskii L P, On the Theory of Superfluidity, Sov. Phys. JETP, 7, 585-590, 1958
[8] Nelson, D.; Piran, T.; Weinberg, S., Statistical Mechanics of Membranes and Surfaces, 1992, Singapore: World Scientific, Singapore
[9] Zhong-Can, O-Y; Ji-Xing, L.; Yu-Zhang, X., Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases, 1999, Singapore: World Scientific, Singapore · Zbl 0982.74002
[10] Darboux, G., Lecons sur la théorie générale des surfaces, Vol. 3, Lignes géodésiques et courbure géodésique paramètres différentiels-deformation des surfaces, Ed, 1894, Paris: Gauthier-Villars, Paris · JFM 25.1159.02
[11] Konopelchenko, B.; Landolfi, G., Generalized Weierstrass Representation for Surfaces in Multi-Dimensional Riemann Spaces, J. Geom. Phys, 29, 319-333, 1999 · Zbl 0954.53011
[12] Tafel, J., Two-Dimensional Reductions of the Self-Dual Yang-Mills Equations in Self-Dual Spaces, J. Math. Phys, 34, 1892-1907, 1993 · Zbl 0774.58037
[13] Barashenkov, I.; Getmanov, B., The Unified Approach to Integrable Relativistic Equations: Soliton Solutions over Nonvanishing Backgrounds, J. Math. Phys, 34, 3054-3072, 1993 · Zbl 0777.35082
[14] Ablovitz, M. J.; Ramani, A.; Segur, H., A Connection between Nonlinear Evolution Equations and Ordinary Differential Equations of P-Type, I., J. Math. Phys, 21, 715-721, 1980 · Zbl 0445.35056
[15] Weiss, J.; Tabor, M.; Carnevale, G., The Painlevé Property for Partial Differential Equations, J. Math. Phys. 24 (1983), 522-526; Weiss J, The Sine-Gordon Equations: Complete and Partial Integrability, J. Math. Phys, 25, 2226-2235, 1984 · Zbl 0557.35107
[16] Musette, M., Painlevé Analysis for Nonlinear Partial Differential Equations, in The Painlevé Property One Century Later, Editor R Conte, Springer Verlag, New York, Chapter, 8, 517-572, 1999 · Zbl 1014.35085
[17] Conte, R., The Painlevé Approach to Nonlinear Ordinary Differential Equations, in The Painlevé Property One Century Later, Editor R Conte, Springer Verlag, New York, Chapter, 3, 77-180, 1999 · Zbl 1034.34103
[18] Weiss, M. A., Dissertation, Flots isospectraux et moments dans des algèbras de lacets appliqués à des équations différentielles nonlinéaires, 1993, Université de Montréal: CRN Preprint, Université de Montréal
[19] Bruschi, M.; Ragnisco, O., Nonlinear Evolution Equations Associated with the Chiral-Field Spectral Problem, Nuovo Cimento (11), B88 (1985), 119-139; Sym A, Ragnisco O, Levy D and Bruschi M, Soliton Surfaces. VII. Relativistic String in External Field: General Integral and Particular Solutions, Lett, Nuovo Cimento, 44, 529-536, 1985
[20] Pickering, A., A New Truncation in Painlevé Analysis, J. Phys. A: Math. Gen, 26, 4395-4405, 1993 · Zbl 0803.35131
[21] Pickering, A., The Singular Manifold Method Revisited, J. Math. Phys, 37, 1894-1927, 1996 · Zbl 0863.35099
[22] Gromak, V., Bäcklund Transformations of Painlevé Equations and Their Applications, in The Painlevé Property One Century Later, Editor R Conte, Springer Verlag, New York, Chapter, 12, 687-734, 1999 · Zbl 1023.34082
[23] Kajiwara, K.; Masuda, T., On the Umemura Polynomials for the Painlevé III Equation, Phys, Letts, A260, 462-467, 1999 · Zbl 0939.34074
[24] Okamoto, K., The Hamiltonians Associated to the Painlevé Equations, in The Painlevé Property One Century Later, Editor R Conte, Springer Verlag, New York, Chapter, 13, 735-789, 1999 · Zbl 1017.37032
[25] Rajamaran, R., Solitons and Instantons, 1982, Amsterdam: North-Holland, Amsterdam · Zbl 0493.35074
[26] Fukumoto, Y.; Miyajima, M., The Localized Induction Hierarchy and the Lund-Regge Equation, J. Phys. A: Math. Gen, 29, 8025-8034, 1996 · Zbl 0901.35073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.