×

Darboux transformation and soliton solutions of the semi-discrete massive Thirring model. (English) Zbl 1477.81062

Summary: A one-fold Darboux transformation between solutions of the semi-discrete massive Thirring model is derived using the Lax pair and the dressing method. This transformation is used to find the exact expressions for soliton solutions on zero and nonzero backgrounds. It is shown that the discrete solitons have the same properties as their continuous counterparts.

MSC:

81T10 Model quantum field theories
81V74 Fermionic systems in quantum theory
39A12 Discrete version of topics in analysis
39A36 Integrable difference and lattice equations; integrability tests
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
35C08 Soliton solutions

References:

[1] Alexeeva, N. V.; Barashenkov, I. V.; Saxena, A., Spinor solitons and their PT-symmetric offspring, Ann. Phys., 403, 198-223 (2019) · Zbl 1411.81114
[2] Barashenkov, I. V.; Getmanov, B. S., Multisoliton solutions in the scheme for unified description of integrable relativistic massive fields. Non-degenerate \(s l(2, C)\) case, Commun. Math. Phys., 112, 423-446 (1987)
[3] Barashenkov, I. V.; Getmanov, B. S.; Kovtun, V. E., The unified approach to integrable relativistic equations: soliton solutions over nonvanishing backgrounds. I, J. Math. Phys., 34, 3039-3053 (1993) · Zbl 0777.35081
[4] Barashenkov, I. V.; Getmanov, B. S., The unified approach to integrable relativistic equations: soliton solutions over nonvanishing backgrounds. II, J. Math. Phys., 34, 3054-3072 (1993) · Zbl 0777.35082
[5] Chen, J.; Pelinovsky, D. E., Rogue periodic waves in the modified Korteweg-de Vries equation, Nonlinearity, 31, 1955-1980 (2018) · Zbl 1393.35201
[6] Contreras, A.; Pelinovsky, D. E.; Shimabukuro, Y., \( L^2\) orbital stability of Dirac solitons in the massive Thirring model, Commun. Partial Differ. Equ., 41, 227-255 (2016) · Zbl 1342.35287
[7] de Sterke, C. M.; Sipe, J. E., Gap solitons, Prog. Opt., 33, 203-260 (1994)
[8] Degasperis, A.; Wabnitz, S.; Aceves, A. B., Bragg grating rogue wave, Phys. Lett. A, 379, 1067-1070 (2015) · Zbl 1341.78021
[9] Gu, C. H.; Hu, H. S.; Zhou, Z. X., Darboux Transformation in Integrable Systems: Theory and Their Applications to Geometry (2005), Springer: Springer Heidelberg, Germany · Zbl 1084.37054
[10] Hietarinta, J.; Joshi, N.; Nijhoff, F., Discrete Systems and Integrability (2016), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1362.37130
[11] Joshi, N.; Pelinovsky, D. E., Integrable semi-discretization of the massive Thirring system in laboratory coordinates, J. Phys. A, 52, Article 03LT01 pp. (2019) · Zbl 1422.81145
[12] Kaup, D. J.; Lakoba, T. I., The squared eigenfunctions of the massive Thirring model in laboratory coordinates, J. Math. Phys., 37, 308-323 (1996) · Zbl 0861.35090
[13] Kaup, D. J.; Newell, A. C., On the Coleman correspondence and the solution of the massive Thirring model, Lett. Nuovo Cimento, 20, 325-331 (1977)
[14] Kawata, K.; Morishima, T.; Inoue, H., Inverse scattering method for the two-dimensional massive Thirring model, J. Phys. Soc. Jpn., 47, 1327-1334 (1979) · Zbl 1334.81105
[15] Komori, Y.; Wadati, M., Massless Thirring model and Bethe ansatz wavefunction, J. Phys. Soc. Jpn., 65, 722-724 (1996) · Zbl 0942.81605
[16] Korepin, V. E., Direct calculation of the S-matrix in the massive Thirring model, Theor. Math. Phys., 41, 953-967 (1979)
[17] Korepin, V. E., The mass spectrum and the S-matrix of the massive Thirring model in the repulsive case, Commun. Math. Phys., 76, 165-176 (1979)
[18] Kuznetzov, E. A.; Mikhailov, A. V., On the complete integrability of the two-dimensional classical Thirring model, Theor. Math. Phys., 30, 193-200 (1977)
[19] Mikhailov, A. V., Integrability of the two-dimensional Thirring model, JETP Lett., 23, 320-323 (1976)
[20] Nijhoff, F. W.; Capel, H. W.; Quispel, G. R.W.; van der Linden, J., The derivative nonlinear Schrödinger equation and the massive Thirring model, Phys. Lett. A, 93, 455-458 (1983)
[21] Nijhoff, F. W.; Capel, H. W.; Quispel, G. R.W., Integrable lattice version of the massive Thirring model and its linearization, Phys. Lett. A, 98, 83-86 (1983)
[22] Orfanidis, S. J., Soliton solutions of the massive Thirring model and the inverse scattering transform, Phys. Rev. D, 14, 472-478 (1976)
[23] Pelinovsky, D. E.; Saalmann, A., Inverse scattering for the massive Thirring model (2018) · Zbl 1442.35362
[24] Pelinovsky, D. E.; Shimabukuro, Y., Orbital stability of Dirac solitons, Lett. Math. Phys., 104, 21-41 (2014) · Zbl 1292.35256
[25] Thirring, W., A soluble relativistic field theory, Ann. Phys., 3, 91-112 (1958) · Zbl 0078.44303
[26] Tsuchida, T., Integrable discretizations of derivative nonlinear Schrödinger equations, J. Phys. A, Math. Gen., 35, 7827-7847 (2002) · Zbl 1040.37061
[27] Tsuchida, T., A systematic method for constructing time discretizations of integrable lattice systems: local equations of motion, J. Phys. A, Math. Theor., 43, Article 415202 pp. (2010) · Zbl 1202.65106
[28] Tsuchida, T., On a new integrable discretization of the derivative nonlinear Schrödinger (Chen-Lee-Liu) equation (2015), 22 pages
[29] Villarroel, J., The DBAR problem and the Thirring model, Stud. Appl. Math., 84, 207-220 (1991) · Zbl 0734.35135
[30] Wadati, M., General solution and Lax pair for 1-D classical massless Thirring model, J. Phys. Soc. Jpn., 52, 1084-1085 (1983)
[31] Xu, T.; Li, H. J.; Zhang, H. J.; Li, M.; Lan, S., Darboux transformation and analytic solutions of the discrete PT-symmetric nonlocal nonlinear Schrödinger equation, Appl. Math. Lett., 63, 88-94 (2017) · Zbl 1351.35195
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.