×

On conformally compact Einstein manifolds. (English) Zbl 1508.53042

This paper surveys some recent results on compactness and uniqueness problems for some classes of conformally compact Einstein manifolds.
Let \(X\) be a smooth manifold of dimension \(d\geq3\) and with boundary \(\partial X\). A smooth conformally compact metric \(g^+\) on \(X\) is a Riemannian metric such that \(g=r^2g^+\) extends smoothly to the closure \(\bar X\) for some so-called defining function \(r\). A defining function is a smooth non-negative function on \(\bar X\) such that \(\partial X=\{r=0\}\) with the differential of \(r\) satisfying \(Dr\ne0\) on \(\partial X\). A conformally compact metric \(g^+\) on \(X\) is conformally compact Einstein (CCE) if its Ricci tensor satisfies \[ \mathrm{Ric}_{g^+}=-(d-1)g^+. \] Two basic examples of CCE manifolds are the hyperbolic ball with the Poincaré metric and the AdS-Schwarzschild space. A further class of basic examples mentioned in Section 2 of the paper is due to C. R. Graham and J. M. Lee [Adv. Math. 87, No. 2, 186–225 (1991; Zbl 0765.53034)].
The authors discuss (non-)existence and (non-)uniqueness results for CCE manifolds. The authors then discuss compactness results for sequences of CCE manifolds (Section 3) and uniqueness results for Graham-Lee metrics (Section 4) with a focus on high dimensions \(d\geq5\). The key results presented in Sections 3 and 4 appear to be taken from a paper currently in preparation by the authors. In Section 5 the authors discuss their previous work [Adv. Math. 340, 588–652 (2018; Zbl 1443.53027); Adv. Math. 373, Article ID 107325, 33 p. (2020; Zbl 1447.53043)] on compactness and uniqueness problems in dimension \(d=4\).

MSC:

53C18 Conformal structures on manifolds
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)

References:

[1] M. T. Anderson, Einstein metrics with prescribed conformal infinity on 4-manifolds,Geom. Funct. Anal.18(2008), no. 2, 305-366. MR 2421542. · Zbl 1148.53033
[2] O. Biquard, Continuation unique ‘a partir de l’infini conforme pour les m´etriques d’Einstein, Math. Res. Lett.15(2008), no. 6, 1091-1099. MR 2470386. · Zbl 1159.53020
[3] O. Biquard, Einstein deformations of hyperbolic metrics, inSurveys in Differential Geometry: Essays on Einstein Manifolds, 235-246, Surv. Differ. Geom., 6, Int. Press, Boston, MA, 1999. MR 1798612. · Zbl 1001.53028
[4] O. Biquard and M. Herzlich, Analyse sur un demi-espace hyperbolique et poly-homog´en´eit´e locale,Calc. Var. Partial Differential Equations51(2014), no. 3-4, 813-848. MR 3268872. · Zbl 1307.53035
[5] T. P. Branson, S.-Y. A. Chang and P. C. Yang, Estimates and extremals for zeta function determinants on four-manifolds,Comm. Math. Phys.149(1992), no. 2, 241-262. MR 1186028. · Zbl 0761.58053
[6] J. S. Case and S.-Y. A. Chang, On fractional GJMS operators,Comm. Pure Appl. Math.69 (2016), no. 6, 1017-1061. MR 3493624. · Zbl 1348.35292
[7] S.-Y. A. Chang and Y. Ge, Compactness of conformally compact Einstein manifolds in dimension 4,Adv. Math.340(2018), 588-652. MR 3886176. · Zbl 1443.53027
[8] S.-Y. A. Chang, Y. Ge and J. Qing, Compactness of conformally compact Einstein 4-manifolds II,Adv. Math.373(2020), 107325, 33 pp. MR 4130465. · Zbl 1447.53043
[9] S.-Y. A. Chang, Y. Ge, X. Jin and J. Qing, On compactness of conformally compact Einstein manifolds and uniqueness of Graham-Lee metrics, III (in preparation).
[10] S.-Y. A. Chang and J. Qing, The zeta functional determinants on manifolds with boundary. I. The formula,J. Funct. Anal.147(1997), no. 2, 327-362. MR 1454485. · Zbl 0914.58039
[11] S.-Y. A. Chang and J. Qing, The zeta functional determinants on manifolds with boundary. II. Extremal metrics and compactness of isospectral set,J. Funct. Anal.147(1997), no. 2, 363-399. MR 1454486. · Zbl 0914.58040
[12] S. Y. A. Chang and R. A. Yang, On a class of non-local operators in conformal geometry, Chin. Ann. Math. Ser. B38(2017), no. 1, 215-234. MR 3592161. · Zbl 1362.53043
[13] P. T. Chru´sciel, E. Delay, J. M. Lee and D. N. Skinner, Boundary regularity of conformally compact Einstein metrics,J. Differential Geom.69(2005), no. 1, 111-136. MR 2169584. · Zbl 1088.53031
[14] S. Dutta and M. Javaheri, Rigidity of conformally compact manifolds with the round sphere as the conformal infinity,Adv. Math.224(2010), no. 2, 525-538. MR 2609014. · Zbl 1210.53040
[15] C. Fefferman and C. R. Graham, Conformal invariants,Ast´erisque, no. S131 (1985), 95-116. MR 0837196. · Zbl 0602.53007
[16] C. Fefferman and C. R. Graham,Q-curvature and Poincar´e metrics,Math. Res. Lett.9 (2002), no. 2-3, 139-151. MR 1909634. · Zbl 1016.53031
[17] C. Fefferman and C. R. Graham,The Ambient Metric, Annals of Mathematics Studies, 178, Princeton University Press, Princeton, NJ, 2012. MR 2858236. · Zbl 1243.53004
[18] C. R. Graham, Volume and area renormalizations for conformally compact Einstein metrics, Rend. Circ. Mat. Palermo (2)Suppl. No. 63 (2000), 31-42. MR 1758076. · Zbl 0984.53020
[19] C. R. Graham and K. Hirachi, The ambient obstruction tensor andQ-curvature, inAdS/CFT Correspondence: Einstein Metrics and Their Conformal Boundaries, 59-71, IRMA Lect. Math. Theor. Phys., 8, Eur. Math. Soc., Z¨urich, 2005. MR 2160867. · Zbl 1074.53027
[20] C. R. Graham, R. Jenne, L. J. Mason and G. A. J. Sparling, Conformally invariant powers of the Laplacian. I. Existence,J. London Math. Soc. (2)46(1992), no. 3, 557-565. MR 1190438. · Zbl 0726.53010
[21] C. R. Graham and J. M. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math.87(1991), no. 2, 186-225. MR 1112625. · Zbl 0765.53034
[22] C. R. Graham and M. Zworski, Scattering matrix in conformal geometry,Invent. Math.152 (2003), no. 1, 89-118. MR 1965361. · Zbl 1030.58022
[23] M. J. Gursky and Q. Han, Non-existence of Poincar´e-Einstein manifolds with prescribed conformal infinity,Geom. Funct. Anal.27(2017), no. 4, 863-879. MR 3678503. · Zbl 1379.53058
[24] M. J. Gursky, Q. Han and S. Stolz, An invariant related to the existence of conformally compact Einstein fillings,Trans. Amer. Math. Soc.374(2021), no. 6, 4185-4205. MR 4251226. · Zbl 1479.53062
[25] M. J. Gursky and G. Sz´ekelyhidi, A local existence result for Poincar´e-Einstein metrics,Adv. Math.361(2020), 106912, 50 pp. MR 4041200. · Zbl 1431.53050
[26] S. W. Hawking and D. N. Page, Thermodynamics of black holes in anti-de Sitter space, Comm. Math. Phys.87(1982/83), no. 4, 577-588. MR 0691045.
[27] D. W. Helliwell, Boundary regularity for conformally compact Einstein metrics in even dimensions,Comm. Partial Differential Equations33(2008), no. 4-6, 842-880. MR 2424380. · Zbl 1145.53037
[28] J. M. Lee, The spectrum of an asymptotically hyperbolic Einstein manifold,Comm. Anal. Geom.3(1995), no. 1-2, 253-271. MR 1362652. · Zbl 0934.58029
[29] J. M. Lee, Fredholm operators and Einstein metrics on conformally compact manifolds,Mem. Amer. Math. Soc.183(2006), no. 864, vi+83 pp. MR 2252687. · Zbl 1112.53002
[30] G. Li, J. Qing and Y. Shi, Gap phenomena and curvature estimates for conformally compact Einstein manifolds,Trans. Amer. Math. Soc.369(2017), no. 6, 4385-4413. MR 3624414. · Zbl 1364.53048
[31] J. Maldacena, The largeNlimit of superconformal field theories and supergravity,Adv. Theor. Math. Phys.2(1998), no. 2, 231-252. MR 1633016. · Zbl 0914.53047
[32] J. M. Maldacena, TASI 2003 Lectures on AdS/CFT, https://arxiv.org/abs/hep-th/0309246, 2003.
[33] J. Maldacena, Einstein gravity from conformal gravity, https://arxiv.org/abs/1105.5632 [hepth], 2011.
[34] S. M. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudoRiemannian manifolds (summary),SIGMA Symmetry Integrability Geom. Methods Appl.4 (2008), Paper 036, 3 pp. MR 2393291. · Zbl 1145.53053
[35] J. Qing, On the rigidity for conformally compact Einstein manifolds,Int. Math. Res. Not. 2003, no. 21, 1141-1153. MR 1962123. · Zbl 1042.53031
[36] E. Witten, Anti de Sitter space and holography,Adv. Theor. Math. Phys.2(1998), no. 2, 253-291. MR 1633012. · Zbl 0914.53048
[37] P. Yang, S.-Yu. A. Chang and J. Qing, On the renormalized volumes for conformally compact Einstein manifolds,J. Math. Sci. (N.Y.)149(2008), no. 6, 1755-1769; MR 2336463
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.