×

Sharp Sobolev inequalities in critical dimensions. (English) Zbl 1195.35132

From the introduction: Let \(K\in\mathbb N\) and \(\Omega\subset \mathbb R^N\) \((N> 2K+1)\) be a regular bounded domain in \(\mathbb R^N\). We consider the semilinear polyharmonic problem
\[ (-\Delta)^Ku=\lambda u+ | u|^{s-2}u\;\text{in}\;\Omega \tag{1} \]
where \(s:=\frac{2N}{N-2K}\) denotes the critical Sobolev exponent. Generalizing results of Brezis-Nirenberg, Pucci-Serrin and Gazzola-Grunau the following sharp estimate is proved.
Theorem: Let \(2k+1\leq n\leq 4k-1\). Then, for any \(1\leq q<n/(n-2k)\), there exists a constant \(c>0\) such that \[ S_k\| f\|_{L^s(\Omega)}^2+c\| f\|_{L^q(\Omega)}^2\leq \| f\|_{k,2,\Omega}^2\quad (s=2n/(n-2k))\tag{1} \] for every \(f\in H_0^k(\Omega)\).

MSC:

35J35 Variational methods for higher-order elliptic equations
35B33 Critical exponents in context of PDEs
35J40 Boundary value problems for higher-order elliptic equations
35J60 Nonlinear elliptic equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] F. Bernis and H.C. Grunau, Critical exponents and multiple critical dimensions for polyharmonic operators, J. Differential Equations 117 (1995), 469–486. · Zbl 0831.35057 · doi:10.1006/jdeq.1995.1062
[2] H. Brezis and E. Lieb, Sobolev inequalities with remainder terms, J. Funct. Anal. 62 (1985), 73–86. · Zbl 0577.46031 · doi:10.1016/0022-1236(85)90020-5
[3] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477. · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[4] D. E. Edmunds, D. Fortunato, and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal. 112 (1990), 269–289. · Zbl 0724.35044 · doi:10.1007/BF00381236
[5] F. Gazzola and H.C. Grunau, Critical dimensions and higher order Sobolev inequalities with remainder terms, NoDEA Nonlinear Differential Equations Appl. 8 (2001), 35–44. · Zbl 0990.46021 · doi:10.1007/PL00001437
[6] Y. Ge, Estimations of the best constant involving the \(L^2\) norm in Wente’s inequality and compact \(H\) -surfaces in Euclidean space, ESAIM Control Optim. Calc. Var. 3 (1998), 263–300. · Zbl 0903.53003 · doi:10.1051/cocv:1998110
[7] H. C. Grunau, Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents, Calc. Var. Partial Differential Equations 3 (1995), 243–252. · Zbl 0822.35049 · doi:10.1007/BF01205006
[8] ——, Critical exponents and multiple critical dimensions for polyharmonic operators. II, Boll. Un. Mat. Ital. B (7) 9 (1995), 815–847. · Zbl 0854.35040
[9] E. Hebey, Sobolev spaces on Riemannian manifolds, Lecture Notes in Math., 1635, Springer-Verlag, Berlin, 1996. · Zbl 0866.58068 · doi:10.1007/BFb0092907
[10] ——, Introduction à l’analyse non linéaire sur les variétés, Fondations, Diderot Editeur, Paris, 1997. · Zbl 0918.58001
[11] P. L. Lions, The concentration-compactness principle in the calculus of variations: The limit case. Part I and Part II, Rev. Mat. Iberoamericana 1 (1985), (1) 145–201 and (2) 45–121. · Zbl 0704.49006 · doi:10.4171/RMI/12
[12] E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations 18 (1993), 125–151. · Zbl 0816.35027 · doi:10.1080/03605309308820923
[13] P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl. (9) 69 (1990), 55–83. · Zbl 0717.35032
[14] C. A. Swanson, The best Sobolev constant, Appl. Anal. 47 (1992), 227–239. · Zbl 0739.46026 · doi:10.1080/00036819208840142
[15] G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 697–718. · Zbl 0341.35031
[16] ——, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372. · Zbl 0353.46018 · doi:10.1007/BF02418013
[17] W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations 42 (1981), 400–413. · Zbl 0486.35032 · doi:10.1016/0022-0396(81)90113-3
[18] R. C. A. M. Van der Vorst, Best constant for the embedding of the space \(H^2\cap H_0^1(\Omega)\) into \(L^2N/(N-4)\Omega,\) Differential Integral Equations 6 (1993), 259–276. · Zbl 0801.46033
[19] J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann. 313 (1999), 207–228. · Zbl 0940.35082 · doi:10.1007/s002080050258
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.