×

Conformal fundamental forms and the asymptotically Poincaré-Einstein condition. (English) Zbl 1536.53079

Summary: An important problem is to determine under which circumstances a metric on a conformally compact manifold is conformal to a Poincaré-Einstein metric. Such conformal rescalings are in general obstructed by conformal invariants of the boundary hypersurface embedding, the first of which is the trace-free second fundamental form and then, at the next order, the trace-free Fialkow tensor. We show that these tensors are the lowest order examples in a sequence of conformally invariant higher fundamental forms determined by the data of a conformal hypersurface embedding. We give a construction of these canonical extrinsic curvatures. Our main result is that the vanishing of these fundamental forms is a necessary and sufficient condition for a conformally compact metric to be conformally related to an asymptotically Poincaré-Einstein metric. More generally, these higher fundamental forms are basic to the study of conformal hypersurface invariants. Because Einstein metrics necessarily have constant scalar curvature, our method employs asymptotic solutions of the singular Yamabe problem to select an asymptotically distinguished conformally compact metric. Our approach relies on conformal tractor calculus as this is key for an extension of the general theory of conformal hypersurface embeddings that we further develop here. In particular, we give in full detail tractor analogs of the classical Gauß Formula and Gauß Theorem for Riemannian hypersurface embeddings.

MSC:

53C18 Conformal structures on manifolds
53A55 Differential invariants (local theory), geometric objects
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
58J32 Boundary value problems on manifolds

Software:

FORM

References:

[1] PIERRE ALBIN, Renormalizing curvature integrals on Poincaré-Einstein manifolds, Adv. Math. 221 (2009), no. 1, 140-169. https://doi.org/10.1016/j.aim.2008.12.002. MR2509323 · Zbl 1170.53017 · doi:10.1016/j.aim.2008.12.002.MR2509323
[2] MICHAEL T. ANDERSON, L 2 curvature and volume renormalization of AHE metrics on 4-manifolds, Math. Res. Lett. 8 (2001), no. 1-2, 171-188. https://doi.org/10.4310/MRL. 2001.v8.n2.a6. MR1825268 · Zbl 0999.53034 · doi:10.4310/MRL.2001.v8.n2.a6.MR1825268
[3] LARS ANDERSSON, PIOTR T. CHRUŚCIEL, and HELMUT FRIEDRICH, On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations, Comm. Math. Phys. 149 (1992), no. 3, 587-612. http://projecteuclid.org/ euclid.cmp/1104251309. MR1186044 · Zbl 0764.53027 · doi:10.1016/j.aim.2008.12.002
[4] MICHAEL FRANCIS ATIYAH, RAOUL HARRY BOTT, and VIJAY KUMAR PATODI, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279-330. https://doi.org/10. 1007/BF01425417. MR650828 · Zbl 0257.58008 · doi:10.4310/MRL.2001.v8.n2.a6
[5] PATRICIO AVILES and ROBERT C. MCOWEN, Complete conformal metrics with negative scalar curvature in compact Riemannian manifolds, Duke Math. J. 56 (1988), no. 2, 395-398. https:// doi.org/10.1215/S0012-7094-88-05616-5 . MR932852 · Zbl 0645.53023
[6] TOBY N. BAILEY, MICHAEL G. EASTWOOD, and A. ROD GOVER, Thomas’s structure bun-dle for conformal, projective and related structures, Rocky Mountain J. Math. 24 (1994), no. 4, 1191-1217. https://doi.org/10.1216/rmjm/1181072333. MR1322223 · Zbl 0828.53012 · doi:10.1007/BF01425417
[7] TOBY N. BAILEY, MICHAEL G. EASTWOOD, and C. ROBIN GRAHAM, Invariant theory for conformal and CR geometry, Ann. of Math. (2) 139 (1994), no. 3, 491-552. https://doi.org/ 10.2307/2118571. MR1283869 · Zbl 0814.53017 · doi:10.1215/S0012-7094-88-05616-5
[8] OLIVIER BIQUARD, Métriques d’Einstein asymptotiquement symétriques, Astérisque 265 (2000), vi+109. MR1760319 · Zbl 0967.53030
[9] SAMUEL H. BLITZ, A. ROD GOVER, and ANDREW WALDRON, FORM documentation for Conformal fundamental forms and the asymptotically Einstein condition, 2021, preprint; see an-cillary files included with the arXiv submission: math.DG/2107.10381. https://doi.org/10. 48550/arXiv.2107.10381. · Zbl 0814.53017 · doi:10.2307/2118571
[10] , Generalized Willmore energies, Q-curvatures, extrinsic Paneitz operators, and extrinsic Laplacian powers, Commun. Contemp. Math. (2021), to appear. https://doi.org/10.48550/ arXiv.2111.00179. · doi:10.48550/arXiv.2111.00179
[11] THOMAS BRANSON and A. ROD GOVER, Conformally invariant non-local operators, Pacific J. Math. 201 (2001), no. 1, 19-60. https://doi.org/10.2140/pjm.2001.201.19. MR1867890 · Zbl 1052.58026 · doi:10.48550/arXiv.2107.10381
[12] JEFFREY S. CASE, Boundary operators associated with the Paneitz operator, Indiana Univ. Math. J. 67 (2018), no. 1, 293-327. https://doi.org/10.1512/iumj.2018.67.6223. MR3776023 · Zbl 1409.58017 · doi:10.48550/arXiv.2107.10381
[13] JEFFREY S. CASE and WEIYU LUO, Boundary operators associated with the sixth-order GJMS operator, Int. Math. Res. Not. IMRN 14 (2021), 10600-10653. https://doi.org/10.1093/ imrn/rnz121. MR4285731 · Zbl 07456030 · doi:10.48550/arXiv.2111.00179
[14] JEFFREY S. CASE and YI WANG, Boundary operators associated to the σ k -curvature, Adv. Math. 337 (2018), 83-106. https://doi.org/10.1016/j.aim.2018.08.004. MR3853045 · Zbl 1402.35123 · doi:10.2140/pjm.2001.201.19
[15] SUN-YUNG ALICE CHANG and YUXIN GE, Compactness of conformally compact Einstein man-ifolds in dimension 4, Adv. Math. 340 (2018), 588-652. https://doi.org/10.1016/j.aim. 2018.10.010. MR3886176 · Zbl 1443.53027 · doi:10.1512/iumj.2018.67.6223
[16] PASCAL CHERRIER, Problèmes de Neumann non linéaires sur les variétés riemanniennes, J. Funct. Anal. 57 (1984), no. 2, 154-206. https://doi.org/10.1016/0022-1236(84)90094-6. MR749522 · doi:10.1016/j.aim.2018.08.004
[17] SEAN N. CURRY and A. ROD GOVER, An introduction to conformal geometry and tractor cal-culus, with a view to applications in general relativity, Asymptotic Analysis in General Relativ-ity, London Math. Soc. Lecture Note Ser., vol. 443, Cambridge Univ. Press, Cambridge, 2018, pp. 86-170. MR3792084 · Zbl 1416.83014 · doi:10.1016/j.aim.2018.10.010
[18] JOSÉ F. ESCOBAR, The Yamabe problem on manifolds with boundary, J. Differential Geom. 35 (1992), no. 1, 21-84. http://projecteuclid.org/euclid.jdg/1214447805. MR1152225 · Zbl 0771.53017 · doi:10.1016/0022-1236(84)90094-6
[19] CHARLES FEFFERMAN and C. ROBIN GRAHAM, Conformal invariants, The Mathematical Heritage ofÉlie Cartan (Lyon, 1984), 1985, pp. 95-116. MR837196 · Zbl 0602.53007
[20] , The Ambient Metric, Annals of Mathematics Studies, vol. 178, Princeton University Press, Princeton, NJ, 2012. MR2858236 · Zbl 1243.53004
[21] AARON FIALKOW, Conformal differential geometry of a subspace, Trans. Amer. Math. Soc. 56 (1944), 309-433. https://doi.org/10.2307/1990251. MR11023 · Zbl 0063.01359 · doi:10.2307/1990251.MR11023
[22] MICHAEL GLAROS, A. ROD GOVER, MATTHEW HALBASCH, and ANDREW WAL-DRON, Variational calculus for hypersurface functionals: Singular Yamabe problem Willmore en-ergies, J. Geom. Phys. 138 (2019), 168-193. https://doi.org/10.1016/j.geomphys.2018. 12.018. MR3903687 · Zbl 1434.53061 · doi:10.1016/j.geomphys.2018.12.018.MR3903687
[23] A. ROD GOVER, Aspects of parabolic invariant theory, Rend. Circ. Mat. Palermo (2) Suppl. 59 (1999), 25-47, The 18th Winter School “Geometry and Physics” (Srní, 1998). MR1692257 · Zbl 0967.53033 · doi:10.2307/1990251
[24] , Invariant theory and calculus for conformal geometries, Adv. Math. 163 (2001), no. 2, 206-257. https://doi.org/10.1006/aima.2001.1999. MR1864834 · Zbl 1004.53010 · doi:10.1006/aima.2001.1999.MR1864834
[25] , Almost Einstein and Poincaré-Einstein manifolds in Riemannian signature, J. Geom. Phys. 60 (2010), no. 2, 182-204. https://doi.org/10.1016/j.geomphys.2009.09. 016. MR2587388 · doi:10.1016/j.geomphys.2018.12.018
[26] A. ROD GOVER, EMANUELE LATINI, and ANDREW WALDRON, Poincaré-Einstein hologra-phy for forms via conformal geometry in the bulk, Mem. Amer. Math. Soc. 235 (2015), no. 1106, vi+95. https://doi.org/10.1090/memo/1106. MR3338300 · Zbl 1326.53057 · doi:10.1006/aima.2001.1999
[27] A. ROD GOVER and LAWRENCE J. PETERSON, Conformally invariant powers of the Laplacian, Q-curvature, and tractor calculus, Comm. Math. Phys. 235 (2003), no. 2, 339-378. https:// doi.org/10.1007/s00220-002-0790-4. MR1969732 · doi:10.1016/j.geomphys.2009.09.016
[28] , Conformal boundary operators, T -curvatures, and conformal fractional Laplacians of odd order, Pacific J. Math. 311 (2021), no. 2, 277-328. https://doi.org/10.2140/pjm.2021. 311.277. MR4292932 · Zbl 1472.35435 · doi:10.2140/pjm.2021.311.277.MR4292932
[29] A. ROD GOVER and ANDREW WALDRON, The so(d + 2, 2) minimal representation and am-bient tractors: The conformal geometry of momentum space, Adv. Theor. Math. Phys. 13 (2009), no. 6, 1875-1894. http://projecteuclid.org/euclid.atmp/1282054379. MR2678999 [30] , Boundary calculus for conformally compact manifolds, Indiana Univ. Math. J. 63 (2014), no. 1, 119-163, available at 1104.2991. https://doi.org/10.1512/iumj.2014.63. 5057. MR3218267 · Zbl 1472.35435 · doi:10.2140/pjm.2021.311.277
[30] , Submanifold conformal invariants and a boundary Yamabe problem, Extended Abstracts Fall 2013: Geometrical Analysis, Type Theory, Homotopy Theory and Univalent Foundations, Trends Math. Res. Perspect. CRM Barc., vol. 3, Birkhäuser/Springer, Cham, 2015, pp. 21-26. https://doi.org/10.1007/978-3-319-21284-5_4. MR3738965 · doi:10.1007/978-3-319-21284-5_4.MR3738965
[31] , Renormalized volume, Comm. Math. Phys. 354 (2017), no. 3, 1205-1244. https:// doi.org/10.1007/s00220-017-2920-z. MR3668619 · Zbl 1310.53060 · doi:10.1512/iumj.2014.63.5057
[32] , A calculus for conformal hypersurfaces and new higher Willmore energy functionals, Adv. Geom. 20 (2020), no. 1, 29-60, available at 1611.04055. https://doi.org/10.1515/ advgeom-2019-0016. MR4052946 · Zbl 1434.53062 · doi:10.1515/advgeom-2019-0016.MR4052946
[33] , Conformal hypersurface geometry via a boundary Loewner-Nirenberg-Yamabe problem, Commun. Anal. Geom. 29 (2021), no. 4, 779-836. http://dx.doi.org/10.4310/CAG.2021. v29.n4.a2. MR4291291 · Zbl 1511.53040 · doi:10.1007/s00220-017-2920-z
[34] C. ROBIN GRAHAM, Volume renormalization for singular Yamabe metrics, Proc. Amer. Math. Soc. 145 (2017), no. 4, 1781-1792. https://doi.org/10.1090/proc/13530. MR3601568 · Zbl 1367.53032 · doi:10.1515/advgeom-2019-0016
[35] C. ROBIN GRAHAM and JOHN M. LEE, Einstein metrics with prescribed conformal in-finity on the ball, Adv. Math. 87 (1991), no. 2, 186-225. https://doi.org/10.1016/ 0001-8708(91)90071-E. MR1112625 · doi:10.1515/advgeom-2019-0016
[36] C. ROBIN GRAHAM and NICHOLAS REICHERT, Higher-dimensional Willmore energies via minimal submanifold asymptotics, Asian J. Math. 24 (2020), no. 4, 571-610. https://doi.org/ 10.4310/AJM.2020.v24.n4.a3. MR4226662 · Zbl 1461.53046 · doi:10.4310/CAG.2021.v29.n4.a2
[37] C. ROBIN GRAHAM and MACIEJ ZWORSKI, Scattering matrix in conformal geometry, Invent. Math. 152 (2003), no. 1, 89-118. https://doi.org/10.1007/s00222-002-0268-1. MR1965361 · Zbl 1030.58022
[38] D. GRANT, A conformally invariant third order Neumann-type operator for hypersurfaces, Master’s Thesis, University of Auckland, 2003.
[39] MÅNS HENNINGSON and KOSTAS SKENDERIS, The holographic Weyl anomaly, J. High Energy Phys. 7 (1998), Paper 23, 12 pp. https://doi.org/10.1088/1126-6708/1998/07/ 023. MR1644988 · Zbl 0958.81083 · doi:10.1088/1126-6708/1998/07/023.MR1644988
[40] EUIHUN JOUNG, MASSIMO TARONNA, and ANDREW WALDRON, A calculus for higher spin interactions, J. High Energy Phys. 7 (2013), 186-211. https://doi.org/10.1007/ JHEP07(2013)186. MR3106113 · doi:10.1007/s00222-002-0268-1
[41] CLAUDE R. LEBRUN, H -space with a cosmological constant, Proc. Roy. Soc. London Ser. A 380 (1982), no. 1778, 171-185. https://doi.org/10.1098/rspa.1982.0035. MR652038 · doi:10.1088/1126-6708/1998/07/023
[42] JOHN M. LEE, Fredholm operators and Einstein metrics on conformally compact manifolds, Mem. Amer. Math. Soc. 183 (2006), no. 864, vi+83. https://doi.org/10.1090/memo/ 0864. MR2252687 · Zbl 1112.53002 · doi:10.1088/1126-6708/1998/07/023
[43] CHARLES LOEWNER and LOUIS NIRENBERG, Partial differential equations invariant under conformal or projective transformations, Contributions to Analysis: A Collection of Papers Dedi-cated to Lipman Bers, 1974, pp. 245-272. · doi:10.1007/JHEP07(2013)186
[44] JUAN MALDACENA, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998), no. 2, 231-252. https://doi.org/10.4310/ATMP.1998.v2. n2.a1. MR1633016 · Zbl 0914.53047 · doi:10.1090/memo/0864
[45] RAFE MAZZEO, Regularity for the singular Yamabe problem, Indiana Univ. Math. J. 40 (1991), no. 4, 1277-1299. https://doi.org/10.1512/iumj.1991.40.40057. MR1142715 · Zbl 0770.53032 · doi:10.1512/iumj.1991.40.40057.MR1142715
[46] RAFE MAZZEO and FRANK PACARD, Maskit combinations of Poincaré-Einstein metrics, Adv. Math. 204 (2006), no. 2, 379-412. https://doi.org/10.1016/j.aim.2005.06. 001. MR2249618 · Zbl 1097.53029 · doi:10.1016/j.aim.2005.06.001.MR2249618
[47] RICHARD B. MELROSE, Geometric Scattering Theory, Stanford Lectures, Cambridge University Press, Cambridge, 1995. MR1350074 · doi:10.4310/ATMP.1998.v2.n2.a1
[48] JAN MÖLLERS, BENT ØRSTED, and GENKAI ZHANG, On boundary value problems for some conformally invariant differential operators, Comm. Partial Differential Equations 41 (2016), no. 4, 609-643. https://doi.org/10.1080/03605302.2015.1123275. MR3488248 · Zbl 1364.35406 · doi:10.1016/j.aim.2005.06.001
[49] ALEXANDER M. POLYAKOV, Fine structure of strings, Nuclear Phys. B 268 (1986), no. 2, 406-412. https://doi.org/10.1016/0550-3213(86)90162-8. MR834521 · Zbl 1097.53029 · doi:10.1016/j.aim.2005.06.001
[50] ABRAR SHAUKAT, Unit invariance as a unifying principle of physics, Ph.D. Thesis, University of California, Davis, 2010.
[51] R. STAFFORD, Tractor calculus and invariants for conformal sub-manifolds, Master’s Thesis, 2005.
[52] PETER STREDDER, Natural differential operators on Riemannian manifolds and representations of the orthogonal and special orthogonal groups, J. Differential Geometry 10 (1975), no. 4, 647-660. http://projecteuclid.org/euclid.jdg/1214433167. MR415692 · Zbl 0318.53046 · doi:10.1016/0550-3213(86)90162-8
[53] JOS VERMASEREN, New features of FORM, 2000, preprint. https://doi.org/10.48550/ arXiv.math-ph/0010025. · doi:10.48550/arXiv.math-ph/0010025
[54] YURI VYATKIN, Manufacturing conformal invariants of hypersurfaces, Ph.D. Thesis, University of Auckland, 2013.
[55] PAUL C.-P. YANG, JIE QING, and SUN-YUNG ALICE CHANG, Renormalized volumes for conformally compact Einstein manifolds, Sovrem. Mat. Fundam. Napravl. 17 (2006), 129-142. https://doi.org/10.1007/s10958-008-0094-0. MR2336463
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.