×

Total mean curvature and first Dirac eigenvalue. (English) Zbl 1530.58016

Author’s abstract: “In this note, we prove an optimal upper bound for the first Dirac eigenvalue of some hypersurfaces in the Euclidean space by combining a positive mass theorem and the construction of quasi-spherical metrics. As a direct consequence of this estimate, we obtain an asymptotic expansion for the first eigenvalue of the Dirac operator on large spheres in three-dimensional asymptotically flat manifolds. We also study this expansion for small geodesic spheres in a three-dimensional Riemannian manifold. We finally discuss how this method can be adapted to yield similar results in the hyperbolic space.”
These results are interesting and useful to study the properties of Dirac operators.

MSC:

58J50 Spectral problems; spectral geometry; scattering theory on manifolds
58C40 Spectral theory; eigenvalue problems on manifolds

References:

[1] Andersson, Lars and Dahl, Mattias, Scalar curvature rigidity for asymptotically locally hyperbolic manifolds, Annals of Global Analysis and Geometry, 16, 1, 1-27, (1998) · Zbl 0946.53021 · doi:10.1023/A:1006547905892
[2] Bartnik, Robert, The mass of an asymptotically flat manifold, Communications on Pure and Applied Mathematics, 39, 5, 661-693, (1986) · Zbl 0598.53045 · doi:10.1002/cpa.3160390505
[3] Bartnik, Robert, Quasi-spherical metrics and prescribed scalar curvature, Journal of Differential Geometry, 37, 1, 31-71, (1993) · Zbl 0786.53019 · doi:10.4310/jdg/1214453422
[4] Bartnik, Robert A. and Chru\'sciel, Piotr T., Boundary value problems for {D}irac-type equations, Journal f\"ur die Reine und Angewandte Mathematik. [Crelle’s Journal], 579, 13-73, (2005) · Zbl 1174.58305 · doi:10.1515/crll.2005.2005.579.13
[5] Bourguignon, Jean-Pierre and Hijazi, Oussama and Milhorat, Jean-Louis and Moroianu, Andrei and Moroianu, Sergiu, A spinorial approach to {R}iemannian and conformal geometry, EMS Monogr. Math., ix+452, (2015), Eur. Math. Soc. (EMS), Z\"urich · Zbl 1348.53001 · doi:10.4171/136
[6] Bray, Hubert L., Proof of the {R}iemannian {P}enrose inequality using the positive mass theorem, Journal of Differential Geometry, 59, 2, 177-267, (2001) · Zbl 1039.53034 · doi:10.4310/jdg/1090349428
[7] Brendle, Simon and Hung, Pei-Ken and Wang, Mu-Tao, A {M}inkowski inequality for hypersurfaces in the anti-de {S}itter–{S}chwarzschild manifold, Communications on Pure and Applied Mathematics, 69, 1, 124-144, (2016) · Zbl 1331.53078 · doi:10.1002/cpa.21556
[8] B\"ar, Christian, Lower eigenvalue estimates for {D}irac operators, Mathematische Annalen, 293, 1, 39-46, (1992) · Zbl 0741.58046 · doi:10.1007/BF01444701
[9] B\"ar, Christian, Extrinsic bounds for eigenvalues of the {D}irac operator, Annals of Global Analysis and Geometry, 16, 6, 573-596, (1998) · Zbl 0921.58065 · doi:10.1023/A:1006550532236
[10] Chru\'sciel, Piotr, Boundary conditions at spatial infinity from a {H}amiltonian point of view, Topological Properties and Global Structure of Space-Time ({E}rice, 1985), NATO Adv. Sci. Inst. Ser. B Phys., 138, 49-59, (1986), Plenum, New York · Zbl 0687.53070 · doi:10.1007/978-1-4899-3626-4_5
[11] Chru\'sciel, Piotr T. and Herzlich, Marc, The mass of asymptotically hyperbolic {R}iemannian manifolds, Pacific Journal of Mathematics, 212, 2, 231-264, (2003) · Zbl 1056.53025 · doi:10.2140/pjm.2003.212.231
[12] Eichmair, Michael and Miao, Pengzi and Wang, Xiaodong, Extension of a theorem of {S}hi and {T}am, Calculus of Variations and Partial Differential Equations, 43, 1-2, 45-56, (2012) · Zbl 1238.53025 · doi:10.1007/s00526-011-0402-2
[13] Fan, Xu-Qian and Shi, Yuguang and Tam, Luen-Fai, Large-sphere and small-sphere limits of the {B}rown–{Y}ork mass, Communications in Analysis and Geometry, 17, 1, 37-72, (2009) · Zbl 1175.53083 · doi:10.4310/CAG.2009.v17.n1.a3
[14] Friedrich, Th., Der erste {E}igenwert des {D}irac-{O}perators einer kompakten, {R}iemannschen {M}annigfaltigkeit nichtnegativer {S}kalarkr\"ummung, Mathematische Nachrichten, 97, 117-146, (1980) · Zbl 0462.53027 · doi:10.1002/mana.19800970111
[15] Ge, Yuxin and Wang, Guofang and Wu, Jie, Hyperbolic {A}lexandrov–{F}enchel quermassintegral inequalities {II}, Journal of Differential Geometry, 98, 2, 237-260, (2014) · Zbl 1301.53077 · doi:10.4310/jdg/1406552250
[16] Ginoux, Nicolas, Une nouvelle estimation extrins\`eque du spectre de l’op\'erateur de {D}irac, Comptes Rendus Math\'ematique. Acad\'emie des Sciences. Paris, 336, 10, 829-832, (2003) · Zbl 1054.58020 · doi:10.1016/S1631-073X(03)00206-1
[17] Herzlich, Marc, A {P}enrose-like inequality for the mass of {R}iemannian asymptotically flat manifolds, Communications in Mathematical Physics, 188, 1, 121-133, (1997) · Zbl 0886.53032 · doi:10.1007/s002200050159
[18] Herzlich, Marc, Minimal surfaces, the {D}irac operator and the {P}enrose inequality, S\'eminaire de {T}h\'eorie {S}pectrale et {G}\'eom\'etrie, {A}nn\'ee 2001-2002, S\'emin. Th\'eor. Spectr. G\'eom., 20, 9-16, (2002), Universit\'e de Grenoble I, Saint-Martin-d’H\`eres · Zbl 1038.58043
[19] Hijazi, Oussama, A conformal lower bound for the smallest eigenvalue of the {D}irac operator and {K}illing spinors, Communications in Mathematical Physics, 104, 1, 151-162, (1986) · Zbl 0593.58040 · doi:10.1007/BF01210797
[20] Hijazi, Oussama, Premi\`ere valeur propre de l’op\'erateur de {D}irac et nombre de {Y}amabe, Comptes Rendus de l’Acad\'emie des Sciences. S\'erie I. Math\'ematique, 313, 12, 865-868, (1991) · Zbl 0738.53030
[21] Hijazi, Oussama and Montiel, Sebasti\'an and Raulot, Simon, A holographic principle for the existence of imaginary {K}illing spinors, Journal of Geometry and Physics, 91, 12-28, (2015) · Zbl 1322.53047 · doi:10.1016/j.geomphys.2015.01.012
[22] Hijazi, Oussama and Montiel, Sebasti\'an and Raulot, Simon, A positive mass theorem for asymptotically hyperbolic manifolds with inner boundary, International Journal of Mathematics, 26, 12, 1550101, 17 pages, (2015) · Zbl 1343.53043 · doi:10.1142/S0129167X15501013
[23] Hijazi, Oussama and Montiel, Sebasti\'an and Rold\'an, Antonio, Dirac operators on hypersurfaces of manifolds with negative scalar curvature, Annals of Global Analysis and Geometry, 23, 3, 247-264, (2003) · Zbl 1032.53040 · doi:10.1023/A:1022808916165
[24] Hijazi, Oussama and Montiel, Sebasti\'an and Zhang, Xiao, Dirac operator on embedded hypersurfaces, Mathematical Research Letters, 8, 1-2, 195-208, (2001) · Zbl 0988.53019 · doi:10.4310/MRL.2001.v8.n2.a8
[25] Kwong, Kwok-Kun, On the positivity of a quasi-local mass in general dimensions, Communications in Analysis and Geometry, 21, 4, 847-871, (2013) · Zbl 1288.53029 · doi:10.4310/CAG.2013.v21.n4.a3
[26] Nirenberg, Louis, The {W}eyl and {M}inkowski problems in differential geometry in the large, Communications on Pure and Applied Mathematics, 6, 337-394, (1953) · Zbl 0051.12402 · doi:10.1002/cpa.3160060303
[27] Pogorelov, A. V., Regularity of a convex surface with given {G}aussian curvature, 31, 1, 88-103, (1952) · Zbl 0048.40501
[28] Schoen, Richard and Yau, Shing-Tung, Proof of the positive mass theorem. {II}, Communications in Mathematical Physics, 79, 2, 231-260, (1981) · Zbl 0494.53028 · doi:10.1007/BF01942062
[29] Schoen, Richard and Yau, Shing-Tung, Positive scalar curvature and minimal hypersurface singularities, Surveys in Differential Geometry 2019, {D}ifferential geometry, {C}alabi–{Y}au Theory, and General Relativity. {P}art 2, Surv. Differ. Geom., 24, 441-480, (2019), Int. Press, Boston, MA · Zbl 07817751 · doi:10.4310/SDG.2019.v24.n1.a10
[30] Shi, Yuguang and Tam, Luen-Fai, Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature, Journal of Differential Geometry, 62, 1, 79-125, (2002) · Zbl 1071.53018 · doi:10.4310/jdg/1090425530
[31] Shi, Yuguang and Tam, Luen-Fai, Rigidity of compact manifolds and positivity of quasi-local mass, Classical and Quantum Gravity, 24, 9, 2357-2366, (2007) · Zbl 1115.83006 · doi:10.1088/0264-9381/24/9/013
[32] Wang, Mu-Tao and Yau, Shing-Tung, A generalization of {L}iu–{Y}au’s quasi-local mass, Communications in Analysis and Geometry, 15, 2, 249-282, (2007) · Zbl 1171.53336 · doi:10.4310/CAG.2007.v15.n2.a2
[33] Witten, Edward, A new proof of the positive energy theorem, Communications in Mathematical Physics, 80, 3, 381-402, (1981) · Zbl 1051.83532 · doi:10.1007/BF01208277
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.