×

High-order Godunov-type scheme for conservation laws with discontinuous flux function in space. (English) Zbl 07539546

Summary: The numerical method for the conservation laws with discontinuous flux in space is considered. The difficulty in designing a high-order accurate and maintaining an efficient well-balanced scheme for this system lies in the fact that the flux is discontinuous across the stationary discontinuity, which results in the jump of the unknown function. In order to overcome this difficulty, the Godunov-type numerical flux is written in the positive and negative fluxes for the first time, which is embedded between two discontinuous flux functions. With the Godunov flux-splitting, the high-order accurate scheme is proposed through the WENO reconstruction of flux and the third-order TVD Runge-Kutta time discretization. Some tests are presented to demonstrate that our new high-order scheme is capable of exactly preserving steady-state solutions.

MSC:

65-XX Numerical analysis
76-XX Fluid mechanics
Full Text: DOI

References:

[1] Adimurthi, D. R., Veerappa Gowda, G. D. and Jaffré, J. [2014a] “ Monotone \((A,B)\) entropy stable numerical scheme for scalar conservation laws with discontinuous flux,” ESAIM Math. Model. Numer. Anal.48, 1725-1755. · Zbl 1308.65135
[2] Adimurthi, D. R., Jaffré, J. and Veerappa Gowda, G. D. [2004] “ Godunov-Type methods for conservation law with discontinuous flux,” SIAM J. Numer. Anal.42, 179-208. · Zbl 1081.65082
[3] Adimurthi, D. R., Jaffré, J. and Veerappa Gowda, G. D. [2013] “ The DFLU flux for systems of conservation laws,” J. Comput. Appl. Math.247, 102-123. · Zbl 1263.76044
[4] Adimurthi, D. R., Mishra, S. and Veerappa Gowda, G. D. [2005] “ Optimal entropy solutions for conservation laws with discontinuous flux functions,” J. Hyperbolic Differ. Equ.2, 783-837. · Zbl 1093.35045
[5] Adimurthi, D. R., Sudarshan, K. K. and Veerappa Gowda, G. D. [2014b] “ Second order scheme for scalar conservation laws with discontinuous flux,” Appl. Numer. Math.80, 46-64. · Zbl 1329.65177
[6] Andreianov, B. and Cancès, C. [2012] “ The Godunov scheme for scalar conservation laws with discontinuous bell-shaped flux functions,” Appl. Math. Letters64, 1844-1848. · Zbl 1253.65122
[7] Andreianov, B., Karlsen, K. H. and Risebro, N. H. [2011] “ A theory of \(L^1\)-dissipative solvers for scalar conservation laws with discontinuous flux,” Arch. Rational Mech. Anal.201, 27-86. · Zbl 1261.35088
[8] Audusse, E. and Perthame, B. [2005] “ Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies,” Proc. Roy. Soc. Edinburgh Sect. A135, 253-265. · Zbl 1071.35079
[9] Badwaik, J. and Ruf, A. M. [2020] “ Convergence rates of monotone schemes for conservation laws with discontinuous flux,” SIAM J. Numer. Anal.58, 607-629. · Zbl 1440.65107
[10] Baiti, P. and Jenssen, H. K. [1997] “ Well-posedness for a class of \(2\times2\) conservation laws with L \({}^\infty\) data,” J. Differ. Equ.140, 161-185. · Zbl 0892.35097
[11] Berresa, S., Bürger, R. and Karlsen, K. H. [2004] “ Central schemes and systems of conservation laws with discontinuous coefficients modeling gravity separation of polydisperse suspensions,” J. Comput. Appl. Math.164-165, 53-80. · Zbl 1107.76366
[12] Buachart, C., Kanok-nukulchai, W., Ortega, E. and Onate, E. [2014] “ A shallow water model by finite pointe method,” Int. J. Comput. Methods11(1), 1350047. · Zbl 1359.76218
[13] Bürger, R., García, A., Karlsen, K. H. and Towers, J. D. [2008] “ A family of numerical schemes for kinematic flows with discontinuous flux,” J. Eng. Math.60, 387-425. · Zbl 1200.76126
[14] Bürger, R., Karlsen, K. H., Risebro, N. H. and Towers, J. D. [2004] “ Well-posedness in \(B V_t\) and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units,” Numer. Math.97, 25-65. · Zbl 1053.76047
[15] Bürger, R., Karlsen, K. H., Torres, H. and Towers, J. D. [2010] “ Second-order schemes for conservation laws with discontinuous flux modelling clarifier-thickener units,” Numer. Math.116, 579-617. · Zbl 1204.65101
[16] Bürger, R., Karlsen, K. H. and Towers, K. H. [2009] “ An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections,” SIAM J. Numer. Anal.47, 1684-1712. · Zbl 1201.35022
[17] Bürger, R., Kumar, S.Kenettinkara, S. K. and Ricardo, R. B. [2016] “ Discontinuous approximation of viscous two-phase flow in heterogeneous porous media,” J. Comput. Phys.321, 126-150. · Zbl 1349.76313
[18] Diehl, S. [1995] “ On scalar conservation laws with point source and discontinuous flux functions,” SIAM J. Math. Anal.26, 1425-1451. · Zbl 0852.35094
[19] Diehl, S. [1996] “ A conservation laws with point source and discontinuous flux function modelling continuous sedimentation,” SIAM J. Appl. Math.56, 388-419. · Zbl 0849.35142
[20] Gimse, T. and Risebro, N. H. [1991] “ Riemann problem with a discontinuous flux function”, Third Int. Conf. Hyperbolic Problem, Theory, Numerical Methods and Applications, Vol. 1, eds. Engquist, B. and Gustafson, B., pp. 488-502. · Zbl 0789.35102
[21] Gimse, T. and Risebro, N. H. [1992] “ Solutions of the Cauchy problem for a conservation law with discontinuous flux functions,” SIAM J. Appl. Math.56, 635-648. · Zbl 0776.35034
[22] Gottlieb, S. and Shu, C.-W. [1998] “ Total variation diminishing Runge-Kutta schemes,” Math. Comput.67, 73-85. · Zbl 0897.65058
[23] Greenberg, J. M. and LeRoux, A.-Y. [1996] “ A well-balanced scheme for the numerical processing of source terms in hyperbolic equations,” SIAM J. Numer. Anal.33, 1-16. · Zbl 0876.65064
[24] Jiang, G. and Shu, C.-W. [1996] “ Efficient implementation of weighted ENO schemes,” J. Comput. Phys.126, 202-228. · Zbl 0877.65065
[25] Jin, S. [2001] “ A steady-state capturing method for hyperbolic systems with geometrical source terms,” M2AN Math. Model. Numer. Anal.35, 631-645. · Zbl 1001.35083
[26] Käppeli, R. and Mishra, S. [2014] “ Well-balanced schemes for the Euler equations with gravitation,” J. Comput. Phys.259, 199-219. · Zbl 1349.76345
[27] Karlsen, K. H. and Towers, J. D. [2004] “ Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux,” Chin. Ann. Math. Ser. B25, 287-318. · Zbl 1112.65085
[28] Klingenberg, C. and Risebro, N. H. [1995] “ Convex conservation laws with discontinuous coeffients. existence, uniqueness and asymptotic behavior,” Commun. Partial. Differ. Equ.20, 1959-1990. · Zbl 0836.35090
[29] Kružkov, S. N. [1970] “ First-order quasi-linear equations with several independent variables,” Mathematics of the USSR-Sbornik10, 217-243. · Zbl 0215.16203
[30] Kumar, K. S., C. P. and Gowda, G. V. [2014] “ A finite volume method for a two-phase multicomponent polymer flooding,” J. Comput. Phys.275, 667-695. · Zbl 1349.76829
[31] LeVeque, R. J. [1998] “ Balancing source terms and flux gradients in high-resolution Godunov methods,” J. Comput. Phys.146, 346-365. · Zbl 0931.76059
[32] Mishra, S. [2005] “ Convergence of upwind finite difference schemes for a scalar conservation law with indefinite discontinuities in the flux function,” SIAM J. Numer. Anal.43, 559-577. · Zbl 1096.35085
[33] Mochen, S. [1987] “ An analysis for the traffic on highways with changing surface conditions,” Math. Model.9, 1-11.
[34] Piccoli, B. and Tournus, M. [2018] “ A general BV existence result for conservation laws with spatial heterogeneities,” SIAM J. Math. Anal.50, 2901-2927. · Zbl 1402.35171
[35] Qamar, S. and Warnecke, G. [2005] “ A high-order kinetic flux-splitting method for the special relativistic hydrodynamics,” Int. J. Comput. Methods02(01), 49-74. · Zbl 1189.76371
[36] Qiao, D.-L., Zhang, P., Lin, Z.-Y., Wong, S. C. and Choi, K. [2017] “ A Runge-Kutta discontinuous Galerkin scheme for hyperbolic conservation laws with discontinuous fluxes,” Appl. Math. Comput.292, 309-319. · Zbl 1410.65324
[37] Shu, C.-W. [1998] “ Essentially nonoscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws,” in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, , Vol. 1697, ed. Quarteroni, A. (Springer), pp. 325-432. · Zbl 0927.65111
[38] Shu, C.-W. [2009] “ High-order weighted essentially nonoscillatory schemes for convection dominated problems,” SIAM Rev.51, 82-126. · Zbl 1160.65330
[39] Sudarshan, K. K., Praveen, C. and Veerappa Gowda, G. D. [2014] “ A finite volume method for a two-phase multicomponent polymer flooding,” J. Comput. Phys.275, 667-695. · Zbl 1349.76829
[40] Towers, J. D. [2000] “ Convergence of a difference scheme for conservation laws with a discontinuous flux,” SIAM J. Numer. Anal.38, 681-698. · Zbl 0972.65060
[41] Towers, J. D. [2001] “ A difference scheme for conservation laws with a discontinuous flux: The nonconvex case,” SIAM J. Numer. Anal.39, 1197-1218. · Zbl 1055.65104
[42] Towers, J. D. [2020] “ An existence result for conservation laws having BV spatial flux heterogeneities-without concavity,” J. Differ. Equ.269, 5754-5764. · Zbl 1440.35213
[43] Wang, G. and Ge, C. [2011] “ Semidiscrete central-upwind scheme for conservation laws with a discontinuous flux function in space,” Appl. Math. Comput.217, 7065-7073. · Zbl 1213.65127
[44] Wang, G. and Hu, Y. [2018] “ The Roe-type interface flux for conservation laws with discontinuous flux function,” Appl. Math. Lett.75, 68-73. · Zbl 1377.65112
[45] Xin, X., Bai, F. and Li, K. [2020] “ Numerical simulating open-channel flows with regular and irregular cross-section shapes based on finite volume Godunov-type scheme,” Int. J. Comput. Methods18(4), 205004. · Zbl 07446893
[46] Xing, Y. and Shu, C.-W. [2005] “ High-order finite difference WENO schemes with the exact conservation property for the shallow water equations,” J. Comput. Phys.208, 206-227. · Zbl 1114.76340
[47] Zeidan, D., Attarakih, M., Kuhnert, J., Tiwari, S., Sharma, V., Drumm, C. and Bart, H.-J. [2010] “ On a high-resolution Godunov method for a CFD-PBM coupled model of two-phase flow in liquid-liquid extreaction columns,” Int. J. Comput. Methods07(3), 421-442. · Zbl 1267.76073
[48] Zhang, M., Shu, C.-W., Wong, G. C. K. and Wong, S. C. [2003] “ A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model,” J. Comput. Phys.191, 639-659. · Zbl 1041.90008
[49] Zhang, P.Wong, S. C. and Shu, C.-W. [2006] “ A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway,” J. Comput. Phys.212, 739-756. · Zbl 1149.65319
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.