×

An optimization-based discrete element model for dry granular flows: application to granular collapse on erodible beds. (English) Zbl 07797644

Summary: Erosion processes and the associated static/flowing transition in granular flows are still poorly understood despite their crucial role in natural hazards such as landslides and debris flows. Continuum models do not yet adequately reproduce the observed increase of runout distance of granular flows on erodible beds or the development of waves at the bed/flow interface. Discrete Element Methods, which simulate each grain’s motion and their complex interactions, provide a unique tool to investigate these processes numerically. Among them, Convex Methods (CM), resulting from the convexification of Contact Dynamics methods, benefit from a robust theoretical framework, ensuring the convergence of the numerical solution at every time iteration. They are also intrinsically more stable than classical Molecular Dynamics methods. However, although already implemented in engineering fields, CMs have not yet been tested in the framework of flows on erodible beds. We present here a Convex Optimization Contact Dynamics (COCD) method and prove that it generates a numerical solution verifying Coulomb’s law at each contact and iteration. After its calibration and validation with experiments and another widely used Contact Dynamics method, we show that our simulations accurately reproduce qualitative and even many quantitative characteristics of experimental granular flows on erodible beds, including the increase of runout distance with the thickness of the erodible bed, the change of the static/flowing interface and the presence of erosion waves behind the flow front. Beyond erosion processes, our article endorses CMs as potential accurate tools for exploring complex granular mechanisms.

MSC:

76Txx Multiphase and multicomponent flows
90Cxx Mathematical programming
70-XX Mechanics of particles and systems

Software:

Mosek; Meschach

References:

[1] Delannay, R.; Valance, A.; Mangeney, A.; Roche, O.; Richard, P., Granular and particle-laden flows: from laboratory experiments to field observations. J. Phys. D, Appl. Phys., 5 (2017)
[2] Lucas, A.; Mangeney, A.; Ampuero, J. P., Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nat. Commun., 1 (2014)
[3] Lucas, A.; Mangeney, A., Mobility and topographic effects for large Valles Marineris landslides on Mars. Geophys. Res. Lett., 10 (2007)
[4] Dufek, J.; Esposti Ongaro, T.; Roche, O., Pyroclastic density currents, 617-629
[5] Utili, S.; Zhao, T.; Houlsby, G. T., 3D DEM investigation of granular column collapse: evaluation of debris motion and its destructive power. Eng. Geol., 3-16 (2015)
[6] Guzzetti, F., Invited perspectives: landslide populations – can they be predicted?. Nat. Hazards Earth Syst. Sci., 5, 1467-1471 (2021)
[7] Guimpier, A.; Conway, S. J.; Mangeney, A.; Lucas, A.; Mangold, N.; Peruzzetto, M.; Pajola, M.; Lucchetti, A.; Munaretto, G.; Sæmundsson, T.; Johnsson, A.; Le Deit, L.; Grindrod, P.; Davis, J.; Thomas, N.; Cremonese, G., Dynamics of recent landslides (<20 My) on Mars: insights from high-resolution topography on Earth and Mars and numerical modelling. Planet. Space Sci. (2021)
[8] Froude, M. J.; Petley, D. N., Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci., 8, 2161-2181 (2018)
[9] Poulain, P.; Le Friant, A.; Pedreros, R.; Mangeney, A.; Filippini, A. G.; Grandjean, G.; Lemoine, A.; Fernández-Nieto, E. D.; Castro Díaz, M. J.; Peruzzetto, M., Numerical simulation of submarine landslides and generated tsunamis: application to the on-going Mayotte seismo-volcanic crisis. C. R. Géosci., S2, 361-390 (2023)
[10] Rowley, P. J.; Kokelaar, P.; Menzies, M.; Waltham, D., Shear-derived mixing in dense granular flows. J. Sediment. Res., 12, 874-884 (2011)
[11] Sovilla, B.; Burlando, P.; Bartelt, P., Field experiments and numerical modeling of mass entrainment in snow avalanches. J. Geophys. Res., Earth Surf., F3 (2006)
[12] Borykov, T.; Mège, D.; Mangeney, A.; Richard, P.; Gurgurewicz, J.; Lucas, A., Empirical investigation of friction weakening of terrestrial and Martian landslides using discrete element models. Landslides, 6, 1121-1140 (2019)
[13] Nguyen, D.-H.; Azéma, É.; Sornay, P.; Radjaï, F., Rheology of granular materials composed of crushable particles. Eur. Phys. J. E, 4 (2018)
[14] Mangeney, A.; Staron, L.; Volfson, D.; Tsimring, L., Comparison between discrete and continuum modeling of granular spreading. WSEAS Trans. Math., 6, 373-380 (2006)
[15] Breard, E. C.P.; Fullard, L.; Dufek, J.; Tennenbaum, M.; Fernandez Nieves, A.; Dietiker, J. F., Investigating the rheology of fluidized and non-fluidized gas-particle beds: implications for the dynamics of geophysical flows and substrate entrainment. Granul. Matter, 1 (2022)
[16] Jaeger, H. M.; Nagel, S. R.; Behringer, R. P., Granular solids, liquids, and gases. Rev. Mod. Phys., 4 (1996)
[17] Lagrée, P. Y.; Staron, L.; Popinet, S., The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with a μ(I)-rheology. J. Fluid Mech., 378-408 (2011) · Zbl 1241.76413
[18] Ionescu, I. R.; Mangeney, A.; Bouchut, F.; Roche, O., Viscoplastic modeling of granular column collapse with pressure-dependent rheology. J. Non-Newton. Fluid Mech., 1-18 (2015)
[19] Martin, N.; Ionescu, I. R.; Mangeney, A.; Bouchut, F.; Farin, M., Continuum viscoplastic simulation of a granular column collapse on large slopes: \(μ(I)\) rheology and lateral wall effects. Phys. Fluids, 1 (2017)
[20] Crosta, G. B.; Imposimato, S.; Roddeman, D., Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface. J. Geophys. Res., Earth Surf., F3 (2009)
[21] Lusso, C.; Ern, A.; Bouchut, F.; Mangeney, A.; Farin, M.; Roche, O., Two-dimensional simulation by regularization of free surface viscoplastic flows with Drucker-Prager yield stress and application to granular collapse. J. Comput. Phys., 387-408 (2017) · Zbl 1375.74020
[22] Savage, S. B.; Hutter, K., The motion of a finite mass of granular material down a rough incline. J. Fluid Mech., 177-215 (1989) · Zbl 0659.76044
[23] Pouliquen, O.; Forterre, Y., Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech., 133-151 (2002) · Zbl 0987.76522
[24] Bouchut, F.; Mangeney-Castelnau, A.; Perthame, B.; Vilotte, J.-P., A new model of Saint Venant and Savage-Hutter type for gravity driven shallow water flows. C. R. Math., 6, 531-536 (2003) · Zbl 1044.35056
[25] Bouchut, F.; Westdickenberg, M., Gravity driven shallow water models for arbitrary topography. Commun. Math. Sci., 3, 359-389 (2004) · Zbl 1084.76012
[26] Kerswell, R. R., Dam break with Coulomb friction: a model for granular slumping?. Phys. Fluids, 5 (2005) · Zbl 1187.76265
[27] Mangeney-Castelnau, A.; Bouchut, F.; Vilotte, J. P.; Lajeunesse, E.; Aubertin, A.; Pirulli, M., On the use of Saint Venant equations to simulate the spreading of a granular mass. J. Geophys. Res., Solid Earth, B9 (2005)
[28] Edwards, A. N.; Russell, A. S.; Johnson, C. G.; Gray, J. M., Frictional hysteresis and particle deposition in granular free-surface flows. J. Fluid Mech., 1058-1095 (2019) · Zbl 1430.76476
[29] Richard, P.; Valance, A.; Métayer, J.-F.; Sanchez, P.; Crassous, J.; Louge, M.; Delannay, R., Rheology of confined granular flows: scale invariance, glass transition, and friction weakening. Phys. Rev. Lett., 24 (2008)
[30] Radjaï, F.; Dubois, F., Discrete-Element Modeling of Granular Materials (2011), Wiley-Iste: Wiley-Iste Hoboken, New Jersey, USA
[31] Estep, J.; Dufek, J., Discrete element simulations of bed force anomalies due to force chains in dense granular flows. J. Volcanol. Geotherm. Res., 108-117 (2013)
[32] Radjai, F.; Roux, J.-N.; Daouadji, A., Modeling granular materials: century-long research across scales. J. Eng. Mech., 4 (2017)
[33] Cundall, P. A.; Strack, O. D., A discrete numerical model for granular assemblies. Géotechnique, 1, 47-65 (1979)
[34] Luding, S., Introduction to discrete element methods. Eur. J. Environ. Civ. Eng., 7-8, 785-826 (2008)
[35] Corral, E.; Moreno, R. G.; García, M. J.; Castejón, C., Nonlinear phenomena of contact in multibody systems dynamics: a review. Nonlinear Dyn., 2, 1269-1295 (2021)
[36] McNamara, S. C., Acoustics and frictional sliding in granular materials. Granul. Matter, 3, 311-324 (2015)
[37] Moreau, J. J.; Panagiotopoulos, P. D.; Strang, G., Topics in Nonsmooth Mechanics (1988), Birkhäuser Verlag: Birkhäuser Verlag Basel, Switzerland · Zbl 0646.00014
[38] Moreau, J. J., Unilateral contact and dry friction in finite freedom dynamics, 1-82 · Zbl 0703.73070
[39] Jean, M.; Moreau, J. J., Unilaterality and dry friction in the dynamics of rigid body collections, 31-48
[40] Moreau, J. J., Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A/Solids, 4, 93-114 (1994) · Zbl 0815.73009
[41] Moreau, J., Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng., 3-4, 329-349 (1999) · Zbl 0968.70006
[42] Jean, M., The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng., 3-4, 235-257 (1999) · Zbl 0959.74046
[43] Moreau, J. J., Modélisation et simulation de matériaux granulaires, 1-30
[44] Stewart, D. E.; Trinkle, J. C., An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Methods Eng., 15, 2673-2691 (1996) · Zbl 0882.70003
[45] Stewart, D. E., Rigid-body dynamics with friction and impact. SIAM Rev., 1, 3-39 (2000) · Zbl 0962.70010
[46] Acary, V.; Brémond, M.; Huber, O., On solving contact problems with Coulomb friction: formulations and numerical comparisons, 375-457
[47] Radjai, F.; Richefeu, V., Contact dynamics as a nonsmooth discrete element method. Mech. Mater., 6, 715-728 (2009)
[48] Staron, L.; Hinch, E. J., Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J. Fluid Mech., 1-27 (2005) · Zbl 1085.76562
[49] Staron, L.; Hinch, E. J., The spreading of a granular mass: role of grain properties and initial conditions. Granul. Matter, 3-4 (2007) · Zbl 1200.74040
[50] Acary, V.; Cadoux, F.; Lemaréchal, C.; Malick, J., A formulation of the linear discrete Coulomb friction problem via convex optimization. Z. Angew. Math. Mech., 2, 155-175 (2011) · Zbl 1370.74114
[51] Anitescu, M., Optimization-based simulation of nonsmooth rigid multibody dynamics. Math. Program., 1, 113-143 (2006) · Zbl 1085.70008
[52] Tasora, A.; Negrut, D.; Anitescu, M., Large-scale parallel multi-body dynamics with frictional contact on the graphical processing unit. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn., 4, 315-326 (2008)
[53] Anitescu, M.; Tasora, A., An iterative approach for cone complementarity problems for nonsmooth dynamics. Comput. Optim. Appl., 2, 207-235 (2010) · Zbl 1200.90160
[54] Tasora, A.; Anitescu, M., A convex complementarity approach for simulating large granular flows. J. Comput. Nonlinear Dyn., 3 (2010)
[55] Tasora, A.; Anitescu, M., A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics. Comput. Methods Appl. Mech. Eng., 5-8, 439-453 (2011) · Zbl 1225.70004
[56] Petra, C.; Gavrea, B.; Anitescu, M.; Potra, F., A computational study of the use of an optimization-based method for simulating large multibody systems. Optim. Methods Softw., 6, 871-894 (2009) · Zbl 1237.90280
[57] Krabbenhoft, K.; Lyamin, A. V.; Huang, J.; Vicente da Silva, M., Granular contact dynamics using mathematical programming methods. Comput. Geotech., 165-176 (2012)
[58] Heyn, T.; Anitescu, M.; Tasora, A.; Negrut, D., Using Krylov subspace and spectral methods for solving complementarity problems in many-body contact dynamics simulation. Int. J. Numer. Methods Eng., 7, 541-561 (2013) · Zbl 1352.74206
[59] Mazhar, H.; Heyn, T.; Negrut, D.; Tasora, A., Using Nesterov’s method to accelerate multibody dynamics with friction and contact. ACM Trans. Graph., 3, 1-14 (2015) · Zbl 1333.68258
[60] Melanz, D.; Fang, L.; Jayakumar, P.; Negrut, D., A comparison of numerical methods for solving multibody dynamics problems with frictional contact modeled via differential variational inequalities. Comput. Methods Appl. Mech. Eng., 668-693 (2017) · Zbl 1439.74229
[61] Corona, E.; Gorsich, D.; Jayakumar, P.; Veerapaneni, S., Tensor train accelerated solvers for nonsmooth rigid body dynamics. Appl. Mech. Rev., 5 (2019)
[62] Maury, B., A time-stepping scheme for inelastic collisions. Numer. Math., 4, 649-679 (2006) · Zbl 1091.70002
[63] Mangeney, A.; Roche, O.; Hungr, O.; Mangold, N.; Faccanoni, G.; Lucas, A., Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res., Earth Surf., F3 (2010)
[64] Farin, M.; Mangeney, A.; Roche, O., Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angles: insights from laboratory experiments. J. Geophys. Res., Earth Surf., 3, 504-532 (2014)
[65] Conway, S. J.; Decaulne, A.; Balme, M. R.; Murray, J. B.; Towner, M. C., A new approach to estimating hazard posed by debris flows in the Westfjords of Iceland. Geomorphology, 4, 556-572 (2010)
[66] Iverson, R. M.; Reid, M. E.; Logan, M.; LaHusen, R. G.; Godt, J. W.; Griswold, J. P., Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat. Geosci., 2, 116-121 (2011)
[67] Iverson, R. M.; Ouyang, C., Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory. Rev. Geophys., 1, 27-58 (2015)
[68] Mangeney, A., Landslide boost from entrainment. Nat. Geosci., 2, 77-78 (2011)
[69] Crutchley, G. J.; Karstens, J.; Berndt, C.; Talling, P. J.; Watt, S. F.; Vardy, M. E.; Hühnerbach, V.; Urlaub, M.; Sarkar, S.; Klaeschen, D.; Paulatto, M.; Le Friant, A.; Lebas, E.; Maeno, F., Insights into the emplacement dynamics of volcanic landslides from high-resolution 3D seismic data acquired offshore Montserrat, Lesser Antilles. Mar. Geol., 1-15 (2013)
[70] Roche, O.; Niño, Y.; Mangeney, A.; Brand, B.; Pollock, N.; Valentine, G., Dynamic pore-pressure variations induce substrate erosion by pyroclastic flows. Geology, 10, 1107-1110 (2013)
[71] Crosta, G.; Imposimato, S.; Roddeman, D., Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng. Geol., 1-2, 135-145 (2009)
[72] Edwards, A. N.; Viroulet, S.; Kokelaar, B. P.; Gray, J. M., Formation of levees, troughs and elevated channels by avalanches on erodible slopes. J. Fluid Mech., 278-315 (2017) · Zbl 1415.76709
[73] Viroulet, S.; Edwards, A. N.; Johnson, C. G.; Kokelaar, B. P.; Gray, J. M., Shedding dynamics and mass exchange by dry granular waves flowing over erodible beds. Earth Planet. Sci. Lett. (2019)
[74] Edwards, A. N.; Viroulet, S.; Johnson, C. G.; Gray, J. M., Erosion-deposition dynamics and long distance propagation of granular avalanches. J. Fluid Mech. (2021) · Zbl 1461.76499
[75] Fernández-Nieto, E. D.; Garres-Díaz, J.; Mangeney, A.; Narbona-Reina, G., A multilayer shallow model for dry granular flows with the \(μ(I)\)-rheology: application to granular collapse on erodible beds. J. Fluid Mech., 643-681 (2016) · Zbl 1422.76192
[76] Lusso, C.; Bouchut, F.; Ern, A.; Mangeney, A., A free interface model for static/flowing dynamics in thin-layer flows of granular materials with yield: simple shear simulations and comparison with experiments. Appl. Sci., 4 (2017)
[77] Fernández-Nieto, E. D.; Garres-Díaz, J.; Mangeney, A.; Narbona-Reina, G., 2D granular flows with the \(μ(I)\) rheology and side walls friction: a well-balanced multilayer discretization. J. Comput. Phys., 192-219 (2018) · Zbl 1380.76153
[78] Kavinkumar, C.; Sureka, S.; Pillai, R. J.; Mudavath, H., Influence of erodible layer on granular column collapse using discrete element analysis. Geomech. Geoengin., 4, 1123-1135 (2022)
[79] Mosek, A. P.S., The MOSEK optimization software (2010), available at
[80] De, S.; Corona, E.; Jayakumar, P.; Veerapaneni, S., Scalable solvers for cone complementarity problems in frictional multibody dynamics, 1-7
[81] Andersen, M.; Dahl, J.; Liu, Z.; Vandenberghe, L., Interior-point methods for large-scale cone programming, 55-84
[82] Hiriart-Urruty, J.-B.; Lemaréchal, C., Convex Analysis and Minimization Algorithms I. Grundlehren der mathematischen Wissenschaften (1993), Springer: Springer Berlin, Heidelberg · Zbl 0795.49001
[83] Kleinert, J.; Simeon, B.; Obermayr, M., An inexact interior point method for the large-scale simulation of granular material. Comput. Methods Appl. Mech. Eng., 567-598 (2014) · Zbl 1423.90255
[84] Kleinert, J.; Simeon, B.; Dreßler, K., Nonsmooth contact dynamics for the large-scale simulation of granular material. J. Comput. Appl. Math., 345-357 (2017) · Zbl 1376.49021
[85] Taboada, A.; Estrada, N.; Radjaï, F., Additive decomposition of shear strength in cohesive granular media from grain-scale interactions. Phys. Rev. Lett., 9 (2006)
[86] Engineering-ToolBox, Friction - friction coefficients and calculator (2004), available at
[87] Tang, H.; Song, R.; Dong, Y.; Song, X., Measurement of restitution and friction coefficients for granular particles and discrete element simulation for the tests of glass beads. Materials, 19 (2019)
[88] Martin, H. A.; Peruzzetto, M.; Viroulet, S.; Mangeney, A.; Lagrée, P.-Y.; Popinet, S.; Maury, B.; Lefebvre-Lepot, A.; Maday, Y.; Bouchut, F., Numerical simulations of granular dam break: comparison between discrete element, Navier-Stokes, and thin-layer models. Phys. Rev. E, 5 (2023)
[89] GDR-MiDi, On dense granular flows. Eur. Phys. J. E, 4, 341-365 (2004)
[90] Dufresne, A., Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events. Earth Surf. Process. Landf., 14, 1527-1541 (2012)
[91] Bouchut, F.; Fernández-Nieto, E. D.; Koné, E. H.; Mangeney, A.; Narbona-Reina, G., Dilatancy in dry granular flows with a compressible \(μ(I)\) rheology. J. Comput. Phys. (2021) · Zbl 07500747
[92] Cagnoli, B.; Piersanti, A., Grain size and flow volume effects on granular flow mobility in numerical simulations: 3-D discrete element modeling of flows of angular rock fragments. J. Geophys. Res., Solid Earth, 4, 2350-2366 (2015)
[93] Kermani, E.; Qiu, T.; Li, T., Simulation of collapse of granular columns using the discrete element method. Int. J. Geomech., 6, 1-12 (2015)
[94] Bouchut, F.; Ionescu, I. R.; Mangeney, A., An analytic approach for the evolution of the static/flowing interface in viscoplastic granular flows. Commun. Math. Sci., 8, 2101-2126 (2016) · Zbl 1361.35140
[95] Vanel, L.; Howell, D.; Clark, D.; Behringer, R. P.; Clément, E., Memories in sand: experimental tests of construction history on stress distributions under sandpiles. Phys. Rev. E, 5 (1999)
[96] Beatini, V.; Royer-Carfagni, G.; Tasora, A., A non-smooth-contact-dynamics analysis of Brunelleschi’s cupola: an octagonal vault or a circular dome?. Meccanica, 3, 525-547 (2019)
[97] Projectchrono, An open source multi-physics simulation engine (2018), available at
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.