×

Extension, inflation and torsion of a residually stressed circular cylindrical tube. (English) Zbl 1348.74052

Summary: In this paper, we provide a new example of the solution of a finite deformation boundary-value problem for a residually stressed elastic body. Specifically, we analyse the problem of the combined extension, inflation and torsion of a circular cylindrical tube subject to radial and circumferential residual stresses and governed by a residual-stress dependent nonlinear elastic constitutive law. The problem is first of all formulated for a general elastic strain-energy function, and compact expressions in the form of integrals are obtained for the pressure, axial load and torsional moment required to maintain the given deformation. For two specific simple prototype strain-energy functions that include residual stress, the integrals are evaluated to give explicit closed-form expressions for the pressure, axial load and torsional moment. The dependence of these quantities on a measure of the radial strain is illustrated graphically for different values of the parameters (in dimensionless form) involved, in particular the tube thickness, the amount of torsion and the strength of the residual stress. The results for the two strain-energy functions are compared and also compared with results when there is no residual stress.

MSC:

74B20 Nonlinear elasticity
74E10 Anisotropy in solid mechanics

Software:

ABAQUS

References:

[1] Rivlin R.S.: Torsion of a rubber cylinder. J. Appl. Phys. 18, 444-449 (1947) · doi:10.1063/1.1697674
[2] Rivlin R.S.: Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. A 241, 379-397 (1948) · Zbl 0031.42602 · doi:10.1098/rsta.1948.0024
[3] Rivlin R.S.: A note on the torsion of an incompressible highly-elastic cylinder. Math. Proc. Camb. Philos. Soc. 45, 485-487 (1949) · Zbl 0033.40802 · doi:10.1017/S0305004100025135
[4] Rivlin R.S., Saunders D.W.: Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. A 243, 251-288 (1951) · Zbl 0042.42505 · doi:10.1098/rsta.1951.0004
[5] Gent A.N., Rivlin R.S.: Experiments on the mechanics of rubber II: the torsion, inflation and extension of a tube. Proc. Phys. Soc. B. 65, 487-501 (1952) · doi:10.1088/0370-1301/65/7/304
[6] Green A.E., Adkins J.E.: Large Elastic Deformations. Clarendon Press, Oxford (1970) · Zbl 0227.73067
[7] Ogden R.W., Chadwick P.: On the deformation of solid and tubular cylinders of incompressible isotropic elastic materials. J. Mech. Phys. Solids 20, 77-90 (1972) · Zbl 0232.73074 · doi:10.1016/0022-5096(72)90032-4
[8] Horgan C.O., Polignone D.A.: A note on the pure torsion of a circular cylinder for a compressible nonlinearly elastic material with nonconvex strain-energy. J. Elast. 37, 167-178 (1995) · Zbl 0817.73008 · doi:10.1007/BF00040944
[9] Kirkinis E., Ogden R.W.: On extension and torsion of a compressible elastic circular cylinder. Math. Mech. Solids. 7, 373-392 (2002) · Zbl 1045.74013 · doi:10.1177/108128028476
[10] Polignone D.A., Horgan C.O.: Pure torsion of compressible non-linearly elastic circular cylinders. Q. Appl. Math. 49, 591-607 (1991) · Zbl 0751.73014
[11] Horgan C.O., Saccomandi G.: Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility. J. Elast. 56, 159-170 (1999) · Zbl 0982.74011 · doi:10.1023/A:1007606909163
[12] Kanner L., Horgan C.O.: On extension and torsion of strain-stiffening rubber-like elastic circular cylinders. J. Elast. 93, 39-61 (2008) · Zbl 1159.74324 · doi:10.1007/s10659-008-9164-2
[13] Horgan C.O., Murphy J.G.: Torsion of incompressible fibre-reinforced nonlinearly elastic circular cylinders. J. Elast. 103, 235-246 (2011) · Zbl 1273.74066 · doi:10.1007/s10659-010-9282-5
[14] Horgan C.O., Murphy J.G.: Finite extension and torsion of fiber-reinforced non-linearly elastic circular cylinders. Int. J. NonLinear Mech. 47, 97-104 (2012) · doi:10.1016/j.ijnonlinmec.2011.03.003
[15] Rivlin R.S.: Large elastic deformations of isotropic materials VI. further results in the theory of torsion, shear and flexure. Philos. Trans. R. Soc. Lond. A 242, 173-195 (1949) · Zbl 0035.41503 · doi:10.1098/rsta.1949.0009
[16] Zidi M.: Torsion and telescopic shearing of a compressible hyperelastic tube. Mech. Res. Commun. 26, 245-252 (1999) · Zbl 0945.74528 · doi:10.1016/S0093-6413(99)00020-8
[17] Zidi M.: Finite torsion and anti-plane shear of a compressible hyperelastic and transversely isotropic tube. Int. J. Eng. Sci. 38, 1487-1496 (2000) · doi:10.1016/S0020-7225(99)00116-0
[18] Zidi M.: Finite torsion and shearing of a compressible and anisotropic tube. Int. J. NonLinear Mech. 35, 1115-1126 (2000) · Zbl 1011.74006 · doi:10.1016/S0020-7462(99)00083-9
[19] Zidi M., Cheref M.: Finite deformations of fibre-reinforced vascular prosthesis. Mech. Res. Commun. 28, 55-62 (2001) · Zbl 0982.74048 · doi:10.1016/S0093-6413(01)00144-6
[20] El Hamdaoui M., Merodio J., Ogden R.W., Rodríguez J.: Finite elastic deformations of transversely isotropic circular cylindrical tubes. Int. J. Solids Struct. 51, 1188-1196 (2014) · doi:10.1016/j.ijsolstr.2013.12.019
[21] Paige, R.E.: FEA in the design process of rubber bushings. In: ABAQUS Users’ Conference. Simulia, Dassault Systèmes, Providence, RI, pp. 1-15 (2002)
[22] Paige, R.E., Mars, W.V.: Implications of the Mullins effect on the stiffness of a pre-loaded rubber component. In: ABAQUS Users’ Conference, pp. 1-15. Simulia, Dassault Systèmes, Providence, RI (2004)
[23] Rachev A.: Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. J. Biomech. 30, 819-827 (1997) · doi:10.1016/S0021-9290(97)00032-8
[24] Rachev A., Hayashi K.: Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann. Biomed. Eng. 27, 459-468 (1999) · doi:10.1114/1.191
[25] Holzapfel G.A., Gasser T.C., Ogden R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1-48 (2000) · Zbl 1023.74033 · doi:10.1023/A:1010835316564
[26] Ogden, R.W., Schulze-Bauer, C.A.J.: Phenomenological and structural aspects of the mechanical response of arteries. In: Proceedings of the ASME Mechanics in Biology Symposium, Orlando, November 2000. ASME AMD-vol. 242/BED-vol. 46, pp. 125-140. ASME, New York (2000) · Zbl 1027.74004
[27] Ogden, R.W.: Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue (Lecture notes, CISM Course on the Biomechanics of Soft Tissue in Cardiovascular Systems), pp. 65-108. CISM Courses and Lectures Series 441. Springer, Wien (2003) · Zbl 1151.74386
[28] Holzapfel G.A., Ogden R.W.: Modelling the layer-specific 3D residual stresses in arteries, with an application to the human aorta. J. R. Soc. Interface 7, 787-799 (2010) · doi:10.1098/rsif.2009.0357
[29] Zidi M.: Combined torsion, circular shearing and axial shearing of a compressible hyper elastic and prestressed tube. J. Appl. Mech. 67, 33-40 (2000) · Zbl 1110.74808 · doi:10.1115/1.321149
[30] Zidi M.: Azimuthal shearing and torsion of a compressible and prestressed tube. Int. J. Non-Linear Mech. 35, 209-210 (2000) · Zbl 1006.74014
[31] Zidi M.: Effects of a prestress on a reinforced, nonlinearly elastic and compressible tube subjected to combined deformations. Int. J. Solids Struct. 38, 4657-4669 (2001) · Zbl 0997.74007 · doi:10.1016/S0020-7683(00)00308-5
[32] Zidi M., Cheref M.: Finite deformations of a hyperelastic, compressible and fibre reinforced tube. Eur. J. Mech. A/Solids 21, 971-980 (2002) · Zbl 1027.74004 · doi:10.1016/S0997-7538(02)01239-1
[33] Hoger A.: On the residual stress possible in an elastic body with material symmetry. Arch. Ration. Mech. Anal. 88, 271-290 (1985) · Zbl 0571.73011 · doi:10.1007/BF00752113
[34] Hoger A.: The constitutive equation for finite deformations of a transversely isotropic hyperelastic material with residual stress. J. Elast. 33, 107-118 (1993) · Zbl 0799.73016 · doi:10.1007/BF00705801
[35] Shams M., Destrade M., Ogden R.W.: Initial stresses in elastic solids: constitutive laws and acoustoelasticity. Wave Motion 48, 552-567 (2011) · Zbl 1239.74013 · doi:10.1016/j.wavemoti.2011.04.004
[36] Ogden R.W., Singh B.: Propagation of waves in an incompressible transversely isotropic elastic solid with initial stress: Biot revisited. J. Mech. Mater. Struct. 6, 453-477 (2011) · doi:10.2140/jomms.2011.6.453
[37] Shams M., Ogden R.W.: On Rayleigh-type surface waves in an initially stressed incompressible elastic solid. IMA J. Appl. Math. 79, 360-376 (2014) · Zbl 1288.74038 · doi:10.1093/imamat/hxs070
[38] Ogden R.W., Singh B.: The effect of rotation and initial stress on the propagation of waves in a transversely isotropic elastic solid. Wave Motion 51, 1108-1126 (2014) · Zbl 1456.74081 · doi:10.1016/j.wavemoti.2014.05.004
[39] Hoger A.: On the determination of residual stress in an elastic body. J. Elast. 16, 303-324 (1986) · Zbl 0616.73033 · doi:10.1007/BF00040818
[40] Johnson B.E., Hoger A.: The dependence of the elasticity tensor on residual stress. J. Elast. 33, 145-165 (1993) · Zbl 0812.73024 · doi:10.1007/BF00705803
[41] Merodio J., Ogden R.W., Rodríguez J.: The influence of residual stress on finite deformation elastic response. Int. J. NonLinear Mech. 56, 43-49 (2013) · doi:10.1016/j.ijnonlinmec.2013.02.010
[42] Ogden, R.W.: Nonlinear elasticity with application to soft fibre-reinforced materials. In: CISM Course on Nonlinear Mechanics of Soft Fibrous Materials. CISM Courses and Lectures Series 559. Springer, Wien (2014) · Zbl 1006.74014
[43] Ogden R.W.: Non-linear Elastic Deformations. Dover Publications, New York (1997)
[44] Holzapfel G.A.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Wiley, Chichester (2000) · Zbl 0980.74001
[45] Spencer A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, vol. 1, pp. 239-353. Academic Press, New York (1971) · Zbl 0033.40802
[46] Ogden R.W., Singh B.: Propagation of waves in an incompressible transversely isotropic elastic solid with initial stress: Biot revisited. J. Mech. Mater. Struct. 6, 453-477 (2011) · doi:10.2140/jomms.2011.6.453
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.