×

A new approach to fuzzy sets: application to the design of nonlinear time series, symmetry-breaking patterns, and non-sinusoidal limit-cycle oscillations. (English) Zbl 1483.94078

Summary: It is shown that characteristic functions of sets can be made fuzzy by means of the \(\mathcal{B}_\kappa\)-function, recently introduced by the author, where the fuzziness parameter \(\kappa\in\mathbb{R}\) controls how much a fuzzy set deviates from the crisp set obtained in the limit \(\kappa\rightarrow 0\). As applications, we present first a general expression for a switching function that may be of interest in electrical engineering and in the design of nonlinear time series. We then introduce another general expression that allows wallpaper and frieze patterns for every possible planar symmetry group (besides patterns typical of quasicrystals) to be designed. We show how the fuzziness parameter \(\kappa\) plays an analogous role to temperature in physical applications and may be used to break the symmetry of spatial patterns. As a further, important application, we establish a theorem on the shaping of limit cycle oscillations far from bifurcations in smooth deterministic nonlinear dynamical systems governed by differential equations. Following this application, we briefly discuss a generalization of the Stuart-Landau equation to non-sinusoidal oscillators.

MSC:

94C11 Switching theory, applications of Boolean algebras to circuits and networks
03E72 Theory of fuzzy sets, etc.
34A07 Fuzzy ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems

References:

[1] Zadeh, L. A., Fuzzy sets Inform Control, 8, 338-353 (1965) · Zbl 0139.24606
[2] Klaua, D., Über einen ansatz zur mehrwertigen mengenlehre, Monatsb Deutsch Akad Wiss Berlin, 7, 859-876 (1965) · Zbl 0154.26001
[3] Goguen, J. A., The logic of inexact concepts, Synthese, 19, 325-373 (1969) · Zbl 0184.00903
[4] Zimmermann, H. J., Fuzzy set theory, WIREs Comp Stats, 2, 317 (2010)
[5] Zimmermann, H. J., Fuzzy set theory and its applications (2001), Kluwer: Kluwer Boston
[6] García-Morales, V., Universal map for cellular automata, Phys Lett A, 376, 2645 (2012) · Zbl 1266.68135
[7] García-Morales, V., From deterministic cellular automata to coupled map lattices, J Phys A: Math Theor, 49, 295101 (2016) · Zbl 1346.82029
[8] García-Morales, V., Nonlinear embeddings: applications to analysis, fractals and polynomial root finding, Chaos Sol Fract, 99, 312 (2017) · Zbl 1373.26013
[9] Marouchos, C. C., The switching function: analysis of power electronic systems (2008), The Institution of Engineering and Technology: The Institution of Engineering and Technology London · Zbl 1131.94028
[10] Farris, F. A., Creating symmetry: the artful mathematics of wallpaper patterns (2015), Princeton University Press: Princeton University Press Princeton · Zbl 1325.00027
[11] Ermentrout, G. B.; Terman, D., Mathematical foundations of neuroscience (2010), Springer: Springer New York · Zbl 1320.92002
[12] van der Pol, B., On relaxation oscillations, I Phil Mag, 2, 978-992 (1926) · JFM 52.0450.05
[13] FitzHugh, R., Thresholds and plateaus in the hodgkin-huxley nerve equations, J Gen Physiol, 43, 867-896 (1960)
[14] Nagumo, J. S.; Arimoto, S.; Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc IRE, 50, 2061-2070 (1962)
[15] Fields, R. J.; Noyes, R. M., Oscillations in chemical systems. IV. limit cycle behavior in a model of a real chemical oscillation, J Chem Phys, 60, 1877-1884 (1974)
[16] Belousov, B. P., A periodic reaction and its mechanism, (Field, R. J.; Burger, M., Oscillations and traveling waves in chemical systems (1985), Wiley: Wiley New York), 605-613
[17] Zhabotinsky, A. M.; Buchholtz, F.; Kiyatkin, A. B.; Epstein, I. R., Oscillations and waves in metal-ion-catalyzed bromate oscillating reactions in highly oxidized states, J Phys Chem, 97, 7578-7584 (1993)
[18] Morris, C.; Lecar, H., Voltage oscillations in the barnacle giant muscle fiber, Biophys J, 35, 193-213 (1981)
[19] Guantes, R.; Poyatos, J., Dynamical principles of two-component genetic oscillators, PLoS Comput Biol, 2, e30 (2006)
[20] Segel, L.; Goldbeter, A., Scaling in biochemical kinetics: dissection of a relaxation oscillator, J Math Biol, 32, 147-160 (1994) · Zbl 0787.92017
[21] Goldbeter, A.; Lefever, R., Dissipative structures for an allosteric model: application to glycolytic oscillations, Biophys J, 12, 1302-1315 (1972)
[22] Gonze, D.; Markadieu, N.; Goldbeter, A., Selection of in-phase or out-of-phase synchronization in a model based on global coupling of cells undergoing metabolic oscillations, Chaos, 18, 037127 (2008)
[23] Westermark, P.; Lansner, A., A model of the phosphofructokinase and glycolytic oscillations in pancreating β-cell, Biophys J, 85, 126-139 (2003)
[24] Whitney, H., Characteristic functions and the algebra of logic, Ann Math, II Ser, 84, 405 (1933) · JFM 59.0051.05
[25] Whitney, H., A logical expansion in mathematics, Bull Amer math Soc, 88, 572 (1932) · JFM 58.0605.08
[26] Stanley, R. P., Enumerative combinatorics Vol. I (1997), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0889.05001
[27] García-Morales, V., Symmetry analysis of cellular automata, Phys Lett A, 377, 276 (2013) · Zbl 1298.68182
[28] García-Morales, V., Origin of complexity and conditional predictability in cellular automata, Phys Rev E, 88, 042814 (2013)
[29] García-Morales, V., Substitution systems and nonextensive statistics, Phys A, 440, 110-117 (2015) · Zbl 1402.37025
[30] Wei, D.; Takahashi, S.; Takamasu, K.; Matsumoto, H., Experimental observation of pulse trains’ destructive interference with a femtosecond optical frequency-comb-based interferometer, Opt Lett, 34, 2775-2777 (2009)
[31] Conway, J. H.; Burgiel, H.; Goodman-Strauss, C., The symmetries of things (2008), AK Peters: AK Peters Wellesley MA · Zbl 1173.00001
[32] Liu, S. H.; Leng, M.; Ouyang, P. C., The visualization of spherical patterns with symmetries of the wallpaper group, Complexity, 7315695 (2018) · Zbl 1398.52025
[33] Conway, J. H., The orbifold notation for surface groups, (Liebeck, M. W.; Saxl, J., Groups, combinatorics and geometry: proceedings of the L.M.S. Durham symposium, july 5-5, Durham, U.K., 1990, London mathematical society lecture note series 165 (1992), Cambridge University Press: Cambridge University Press Cambridge), 438-447 · Zbl 0835.20048
[34] Verberck, B., Symmetry-adapted fourier series for the wallpaper groups, Symmetry, 4, 379-426 (2012) · Zbl 1351.42013
[35] Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J., Metallic phase with long-range orientational order and no translational symmetry, Phys Rev Lett, 53, 1951-1953 (1984)
[36] Cronin, J., Mathematical aspects of Hodgkin-Huxley neural theory (1987), Cambridge University Press: Cambridge University Press Cambridge UK · Zbl 0627.92005
[37] Goldbeter, A., Biochemical oscillations and cellular rhythms (1996), Cambridge University Press: Cambridge University Press Cambridge UK · Zbl 0837.92009
[38] Strogatz, S., Nonlinear dynamics and chaos (2014), Westview Press, Boulder: Westview Press, Boulder Colorado
[39] Lefschetz, S., Differential equations: geometric theory (1963), Interscience: Interscience New York · Zbl 0107.07101
[40] Dulac, H., Recherche des cycles limites, CR Acad Sci Paris, 204, 23 (1937) · Zbl 0016.40003
[41] Lloyd, N. G., A note on the number of limit cycles in certain two-dimensional systems, J Lond Math Soc, 20, 277-286 (1979) · Zbl 0407.34027
[42] Dutta, A.; Das, D.; Banerjee, D.; Bhattacharjee, J. K., Estimating the boundaries of a limit cycle in a 2Ddynamical system using renormalization group, Comm Nonlin Sci Numer Simulat, 57, 47-57 (2018) · Zbl 1510.34047
[43] Banerjee, D.; Bhattacharjee, J. K., Analyzing jump phenomena and stability in nonlinear oscillators using renormalization group arguments, Am J Phys, 78, 142 (2010)
[44] Bendixson, I., Sur les courbes définies par des équations différentielles, Acta Math, 24, 1 (1901) · JFM 31.0328.03
[45] Teschl, G., Ordinary differential equations and dynamical systems (2012), American Mathematical Society: American Mathematical Society Providence · Zbl 1263.34002
[46] Kuznetsov, Y. A., Elements of applied bifurcation theory (2010), Springer: Springer New York
[47] Guckenheimer, J., Multiple bifurcation problems for chemical reactors, Phys D, 20, 1-20 (1986) · Zbl 0593.34043
[48] Lawden, D. F., Families of ovals and their orthogonal trajectories, Math Gazette, 83, 410-420 (1999)
[49] Basset, A. B., An elementary treatise on cubic and quartic curves (1901), Deighton Bell and Co.: Deighton Bell and Co. London · JFM 36.0650.05
[50] Kuramoto, Y., Chemical oscillations, waves and turbulence (1984), Springer: Springer Berlin · Zbl 0558.76051
[51] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: a universal concept in nonlinear sciences (2001), Cambridge University Press, Cambridge UK · Zbl 0993.37002
[52] García-Morales, V.; Krischer, K., The complex Ginzburg-Landau equation: an introduction, Contemp Phys, 53, 79-95 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.