×

On the qualitative behavior of a class of generalized Liénard planar systems. (English) Zbl 1508.34029

This work is devoted to the problem of existence of limit cycles for a class of Liénard generalized differential systems \[ \frac{dx}{dt} = y - F(x,y), \quad \frac{dy}{dt} = -g(x), \] assuming that \(F : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) and \(g : \mathbb{R} \rightarrow \mathbb{R}\) are locally Lipschitz continuous functions, in order to guarantee the uniqueness of the solutions for the associated initial value problems. It is also assumed that \(g(0) = 0\), \(g(x)x > 0 \) for \(x = 0\) and that the origin is the only singular point of the system. At first, the authors discuss some basic facts of the mentioned system related to the use of the energy of the associated Duffing equations as a Lyapunov function. Then they study the case \(F(x, y) = \lambda B(y)A(x)\), where \(A(x)\) satisfies the standard assumptions on \(F(x)\) in the classical case.

MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.)

References:

[1] Aghajani, A.; Moradifam, A., The generalised Liénard equations, Glasg. Math. J., 51, 605-617 (2009) · Zbl 1179.34032 · doi:10.1017/S0017089509990036
[2] Alsholm, P., Existence of limit cycles for generalized Liénard equations, J. Math. Anal. Appl., 171, 242-255 (1992) · Zbl 0763.34016 · doi:10.1016/0022-247X(92)90387-S
[3] Carletti, T., Uniqueness of limit cycles for a class of planar vector fields, Qual. Theory Dyn. Syst., 6, 31-43 (2005) · Zbl 1135.34022 · doi:10.1007/BF02972666
[4] Carletti, T.; Villari, G., A note on existence and uniqueness of limit cycles for Liénard systems, J. Math. Anal. Appl., 307, 763-773 (2005) · Zbl 1081.34028 · doi:10.1016/j.jmaa.2005.01.054
[5] Carletti, T., Villari, G.: Existence of limit cycles for some generalisation of the Liénard equations: the relativistic and the prescribed curvature cases. Electron. J. Qual. Theory Differ. Equ. 1-15, (2020) · Zbl 1449.34104
[6] Cartwright, M.L., Swinnerton-Dyer, H.P.F.: The boundedness of solutions of systems of differential equations. In: Differential equations (Colloq., Keszthely, 1974), pp. 121-130. Colloq. Math. Soc. János Bolyai, Vol. 15, North-Holland, Amsterdam, (1977) · Zbl 0361.34028
[7] Cartwright, M.L., Swinnerton-Dyer, H.P.F.: Boundedness theorems for some second-order differential equations. IV [Russian], Differentsial’nye Uravneniya 14, 1941-1979, (1978), 2106. [English translation: Differential Equations 14 (1978), 1378-1406 (1979)] · Zbl 0429.34037
[8] Cioni, M.; Villari, G., An extension of Dragilev’s theorem for the existence of periodic solutions of the Liénard equation, Nonlinear Anal., 127, 55-70 (2015) · Zbl 1328.34026 · doi:10.1016/j.na.2015.06.026
[9] Conti, R., Soluzioni periodiche dell’equazione di Liénard generalizzata. Esistenza ed unicità, Boll. Un. Mat. Ital. (3), 7, 111-118 (1952) · Zbl 0047.08801
[10] Conti, R., Equazioni di Van der Pol e controllo in tempo minimo, Quaderni Istituto Matematico Ulisse Dini, 13, 46 (1976)
[11] Duff, GFD; Levinson, N., On the non-uniqueness of periodic solutions for an asymmetric Liénard equation, Q. Appl. Math., 10, 86-88 (1952) · Zbl 0046.31701 · doi:10.1090/qam/46511
[12] Filippov, A.F.: Differential equations with discontinuous righthand sides, [Translated from the Russian. Mathematics and its Applications (Soviet Series)], Vol. 18, Kluwer Academic Publishers Group, Dordrecht, (1988) · Zbl 0664.34001
[13] Gyllenberg, M.; Ping, Y., The generalized Liénard systems, Discrete Contin. Dyn. Syst., 8, 1043-1057 (2002) · Zbl 1019.34051 · doi:10.3934/dcds.2002.8.1043
[14] Hale, JK, Ordinary Differential Equations (1980), Huntington: Robert E. Krieger Publishing Co., Inc, Huntington · Zbl 0433.34003
[15] Hara, T.; Yoneyama, T., On the global center of generalized Liénard equation and its application to stability problems, Funkcial. Ekvac., 28, 171-192 (1985) · Zbl 0585.34038
[16] Hara, T.; Sugie, J., When all trajectories in the Liénard plane cross the vertical isocline?, Nonlinear Differ. Equ. Appl., 2, 527-551 (1995) · Zbl 0840.34033 · doi:10.1007/BF01210622
[17] Hayashi, M., On the uniqueness of the closed orbit of the Liénard system, Math. Japon., 46, 371-376 (1997) · Zbl 0894.34026
[18] Hayashi, M., Villari, G., Zanolin, F.: On the uniqueness of limit cycle for certain Liénard systems without symmetry, Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 55, 10 pp · Zbl 1413.34125
[19] Huang, K-C, On the existence of limit cycles of the system \(dx/dt=h(y)-F(x), dy/dt=-g(x)\) [Chinese], Acta Math. Sinica, 23, 483-490 (1980) · Zbl 0451.34027
[20] Huang, XC; Sun, PT, Uniqueness of limit cycles in a Liénard-type system, J. Math. Anal. Appl., 184, 348-359 (1994) · Zbl 0808.34032 · doi:10.1006/jmaa.1994.1205
[21] Huang, X.; Zhu, L.; Cheng, A., Limit cycles in a general two-stroke oscillation, Nonlinear Anal., 64, 22-32 (2006) · Zbl 1096.34021 · doi:10.1016/j.na.2005.05.039
[22] Kooij, RE; Jianhua, S., A note on: “Uniqueness of limit cycles in a Liénard-type system”, J. Math. Anal. Appl., 208, 260-276 (1997) · Zbl 0872.34012 · doi:10.1006/jmaa.1997.5284
[23] LaSalle, J.P.: The stability of dynamical systems. With an appendix: “Limiting equations and stability of nonautonomous ordinary differential equations” by Z. Artstein, Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, Pa., (1976) · Zbl 0364.93002
[24] Lefschetz, S.: Differential equations: geometric theory, (reprinting of the second edition) DoverPublications, Inc., New York (1977)
[25] Levinson, N.; Smith, OK, A general equation for relaxation oscillations, Duke Math. J., 9, 382-403 (1942) · Zbl 0061.18908 · doi:10.1215/S0012-7094-42-00928-1
[26] Liénard, A., Étude des oscillations entretenues, Revue générale d’électricité, 23, 901-912, 946-954 (1928)
[27] Lloyd, NG, Liénard systems with several limit cycles, Math. Proc. Cambridge Philos. Soc., 102, 565-572 (1987) · Zbl 0645.34021 · doi:10.1017/S0305004100067608
[28] Marić, V., Regular Variation and Differential Equations, Lecture Notes in Mathematics (2000), Berlin: Springer, Berlin · Zbl 0946.34001 · doi:10.1007/BFb0103952
[29] Mawhin, J., A history of auto-oscillations and limit cycles?, Bull. de la Classe des Sci., 20, 49-94 (2009) · Zbl 1231.91318 · doi:10.3406/barb.2009.28678
[30] Nápoles Valdés, JE, Uniqueness of limit cycles for a class of Liénard systems, Rev. Un. Mat. Argentina, 42, 39-49 (2000) · Zbl 1019.34036
[31] Pérez-Gonza ’lez, S.; Torregrosa, J.; Torres, PJ, Existence and uniqueness of limit cycles for generalized \(\phi \)-Laplacian Liénard equations, J. Math. Anal. Appl., 439, 745-765 (2016) · Zbl 1346.34027
[32] Sabatini, M.; Villari, G., Limit cycle uniqueness for a class of planar dynamical systems, Appl. Math. Lett., 19, 1180-1184 (2006) · Zbl 1188.34040 · doi:10.1016/j.aml.2005.09.017
[33] Sansone, G., Sopra l’equazione di A. Liénard delle oscillazioni di rilassamento, Ann. Mat. Pura Appl., 28, 153-181 (1949) · Zbl 0037.19001 · doi:10.1007/BF02411124
[34] Sansone, G.; Conti, R., NonLinear Differential Equations (1964), New York: Macmillan, New York · Zbl 0128.08403
[35] Seneta, E., Regularly Varying Functions, Lecture Notes in Mathematics (1976), Berlin: Springer, Berlin · Zbl 0324.26002 · doi:10.1007/BFb0079658
[36] Villari, G., Periodic solutions of Liénard’s equation, J. Math. Anal. Appl., 86, 379-386 (1982) · Zbl 0489.34037 · doi:10.1016/0022-247X(82)90229-3
[37] Villari, G., On the esixtence of periodic solutions for Liénard’s equation, Nonlinear Anal. TMA, 7, 71-78 (1983) · Zbl 0517.34032 · doi:10.1016/0362-546X(83)90104-9
[38] Villari, G., On the qualitative behaviour of solutions of Liénard equation, J. Differ. Equ., 67, 278-293 (1987) · Zbl 0613.34031 · doi:10.1016/0022-0396(87)90150-1
[39] Villari, G., An improvement of Massera’s theorem for the existence and uniqueness of a periodic solution for the Liénard equation, Rend. Istit. Mat. Univ. Trieste, 44, 187-195 (2012) · Zbl 1272.34042
[40] Villari, G.; Zanolin, F., On the uniqueness of the limit cycle for the Liénard equation, via comparison method for the energy level curves, Dynam. Syst. Appl., 25, 321-334 (2016) · Zbl 1369.34048
[41] Villari, G.; Zanolin, F., On the uniqueness of the limit cycle for the Liénard equation with \(f(x)\) not sign-definite, Appl. Math. Lett., 76, 208-214 (2018) · Zbl 1383.34054
[42] Wu, K-G, The existence of limit cycles for a nonlinear system,[Chinese], Acta MathSinica, 25, 456-463 (1982) · Zbl 0505.34024
[43] Xiao, D.; Zhang, Z., On the existence and uniqueness of limit cycles for generalized Liénard systems, J. Math. Anal. Appl., 343, 299-309 (2008) · Zbl 1143.34020 · doi:10.1016/j.jmaa.2008.01.059
[44] Ye, YQ, Theory of Limit Cycles, Second Edition, Translations Of Mathematical Monographs (1986), Providence: American Mathematical Society, Providence · Zbl 0588.34022
[45] Zeng, X.; Zhang, Z-F; Gao, S., On the uniqueness of the limit cycle of the generalized Liénard equation, Bull. London Math. Soc., 26, 213-247 (1994) · Zbl 0805.34031 · doi:10.1112/blms/26.3.213
[46] Zhang, D.; Ping, Y., On the uniqueness of limit cycles in a generalized Liénard system, Qual. Theory Dyn. Syst., 18, 1191-1199 (2019) · Zbl 1478.34039 · doi:10.1007/s12346-019-00332-w
[47] Zhang, ZF, Qualitative Theory of Differential Equations, Traslations of Mathematical Monographs (1991), Providence, RI: American Mathematical Society, Providence, RI
[48] Maple https://www.maplesoft.com/products/Maple/
[49] FieldPlay, https://anvaka.github.io/fieldplay/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.