×

Energy decay rate of multidimensional inhomogeneous Landau-Lifshitz-Gilbert equation and Schrödinger map equation on the sphere. (English) Zbl 1448.35490

Summary: We consider the multidimensional dimensional inhomogeneous Landau-Lifshitz-Gilbert (ILLG) equation and its degenerate case, the Schrödinger map equation. We investigate the special solutions (under large initial values) and their energy property of the ILLG and Schrödinger map equations. Until now, we had not seen a paper presenting an explicit dynamic solution of the multidimensional ILLG. Using the stereographic method, an equivalent equation of ILLG is obtained. Based on this equivalent system, we obtain some exact solutions of the ILLG equation and present some implicit solutions of the Schrödinger map equation. Based on these solutions, by a careful estimation we give the decay rate of energy density.

MSC:

35Q56 Ginzburg-Landau equations
35B44 Blow-up in context of PDEs

References:

[1] Balakrishnan, R.: On the inhomogeneous Heisenberg chain. J. Phys. C, Solid State Phys. 15, 1305-1308 (1982) · doi:10.1088/0022-3719/15/36/007
[2] Baleanu, D., Golmankhaneh, A.K., Golmankhaneh, A.K.: On electromagnetic field in fractional space. Nonlinear Anal., Real World Appl. 11, 288-292 (2010) · Zbl 1196.35224 · doi:10.1016/j.nonrwa.2008.10.058
[3] Bejenaru, I., Ionescu, A., Kenig, C., Tataru, D.: Global Schrödinger maps in dimensions d≥\(2d \geq2\): small data in the critical Sobolev spaces. Ann. Math. 173, 1443-1506 (2011) · Zbl 1233.35112 · doi:10.4007/annals.2011.173.3.5
[4] Chang, N.-H., Shatah, J., Uhlenbeck, K.: Schrödinger maps. Commun. Pure Appl. Math. 53, 590-602 (2000) · Zbl 1028.35134 · doi:10.1002/(SICI)1097-0312(200005)53:5<590::AID-CPA2>3.0.CO;2-R
[5] Ding, Q.: Explicit blow-up solutions to the Schrödinger maps from R \(2R^2\) to the hyperbolic 2-space \(H2\mathcal{H}^2\). J. Math. Phys. 50, 103507 (2009) · Zbl 1260.35200 · doi:10.1063/1.3218848
[6] Daniel, M., Porsezian, K., Lakshmanan, M.: On the integrability of the inhomogeneous spherically symmetric Heisenberg ferromagnet in arbitrary dimensions. J. Math. Phys. 35, 6498-6510 (1994) · Zbl 0821.35114 · doi:10.1063/1.530687
[7] Ding, S.J., Wang, C.Y.: Finite time singularity of the Landau-Lifshitz-Gilbert equation. Int. Math. Res. Not. (2007). https://doi.org/10.1093/imrn/rnm012 · Zbl 1130.35304 · doi:10.1093/imrn/rnm012
[8] Gomez-Aguilar, J.F., Baleanu, D.: Schrödinger equation involving fractional operators with non-singular kernel. J. Electromagn. Waves Appl. 31, 752-761 (2018) · doi:10.1080/09205071.2017.1312556
[9] Guo, B.L., Yang, G.S.: Some exact nontrivial global solutions with values in unit sphere for two-dimensional Landau-Lifshitz equations. J. Math. Phys. 42, 5223-5227 (2001) · Zbl 1063.35047 · doi:10.1063/1.1402955
[10] Huh, H.: Blow-up solutions of modified Schrödinger maps. Commun. Partial Differ. Equ. 33, 235-243 (2008) · Zbl 1139.35303 · doi:10.1080/03605300701588748
[11] He, X.M., Qian, A.X., Zou, W.M.: Existence and concentration of positive solutions for quasi-linear Schrödinger equations with critical growth. Nonlinearity 26, 3137-3168 (2013) · Zbl 1287.35024 · doi:10.1088/0951-7715/26/12/3137
[12] Kosevich, A., Ivanov, B., Kovalev, A.: Magnetic solitons. Phys. Rep. 194, 117-238 (1990) · doi:10.1016/0370-1573(90)90130-T
[13] Liu, X.G.: Concentration sets of the Landau-Lifshitz system and quasi-mean curvature flows. Calc. Var. Partial Differ. Equ. 27, 493-525 (2006) · Zbl 1104.35058 · doi:10.1007/s00526-006-0038-9
[14] Landau, L.D., Lifshitz, E.M.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Z. Sowjetunion 8 (1935). Reproduced in Collected Papers of L. D. Landau, Pergamon, New York, pp. 101-114 (1965) · Zbl 0012.28501
[15] Lin, J.Y., Lai, B.S., Wang, C.Y.: Global well-posedness of the Landau-Lifshitz-Gilbert equation for initial data in Morrey spaces. Calc. Var. Partial Differ. Equ. 54, 665-692 (2015) · Zbl 1328.35081 · doi:10.1007/s00526-014-0801-2
[16] Li, Y.X., Wang, Y.D.: Bubbling location for F-harmonic maps and inhomogeneous Landau-Lifshitz equations. Comment. Math. Helv. 81, 433-448 (2006) · Zbl 1106.35113
[17] Melcher, C.: Global solvability of the Cauchy problem for the Landau-Lifshitz-Gilbert equation in higher dimensions. Indiana Univ. Math. J. 61, 1175-1200 (2012) · Zbl 1272.35116 · doi:10.1512/iumj.2012.61.4717
[18] Muslih, S.I., Agrawal, O.P., Baleanu, D.: A fractional Schrödinger equation and its solution. Int. J. Theor. Phys. 49, 1746-1752 (2010) · Zbl 1197.81126 · doi:10.1007/s10773-010-0354-x
[19] Morales-Delgado, V.F., Gómez-Aguilar, J.F., Baleanu, D.: A new approach to exact optical soliton solutions for the nonlinear Schrödinger equation. Eur. Phys. J. Plus 133, 1-18 (2018) · doi:10.1140/epjp/i2018-11804-8
[20] Morales-Delgado, V.F., Gómez-Aguilar, J.F., Taneco-Hernández, M.A., Baleanu, D.: Modeling the fractional non-linear Schrödinger equation via Liouville-Caputo fractional derivative. Optik 162, 1-7 (2018) · doi:10.1016/j.ijleo.2018.01.107
[21] Merle, F., Raphaël, P., Radnianski, I.: Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem. Invent. Math. 193, 249-365 (2013) · Zbl 1326.35052 · doi:10.1007/s00222-012-0427-y
[22] Ma, X.N., Wang, P.H., Wei, W.: Constant mean curvature surfaces and mean curvature flow with non-zero Neumann boundary conditions on strictly convex domains. J. Funct. Anal. 274(1), 252-277 (2018) · Zbl 1376.53087 · doi:10.1016/j.jfa.2017.10.002
[23] Perelman, G.: Blow up dynamics for equivariant critical Schrödinger maps. Commun. Math. Phys. 330, 69-105 (2014) · Zbl 1300.35008 · doi:10.1007/s00220-014-1916-1
[24] Sun, Y., Liu, L.S., Wu, Y.H.: The existence and uniqueness of positive monotone solutions for a class of nonlinear Schrödinger equations on infinite domains. J. Comput. Appl. Math. 321, 478-486 (2017) · Zbl 1373.35106 · doi:10.1016/j.cam.2017.02.036
[25] Sulem, P., Sulem, C., Bardos, C.: On the continuous limit for a system of classical spins. Commun. Math. Phys. 107, 431-454 (1986) · Zbl 0614.35087 · doi:10.1007/BF01220998
[26] Van Den Berg, J.B., Williams, J.F.: (in-)stability of singular equivariant solutions to the Landau-Lifshitz-Gilbert equation. Eur. J. Appl. Math. 24, 921-948 (2013) · Zbl 1293.35059 · doi:10.1017/S0956792513000247
[27] Yang, G.S., Chang, Q.S.: Limit behavior of solution for multi-dimensional Landau-Lifshitz equations with external magnetic field. Phys. Lett. A 318, 270-280 (2003) · Zbl 1045.35073 · doi:10.1016/j.physleta.2003.08.059
[28] Zhong, P.H., Wang, S., Chen, S.T.: Some periodic and blow-up solutions for Landau-Lifshitz equation. Mod. Phys. Lett. A 26, 2437-2452 (2011) · Zbl 1274.82095 · doi:10.1142/S0217732311036644
[29] Zhong, P.H., Wang, S., Zeng, M.: Two blowup solutions for the inhomogeneous isotropic Landau-Lifshitz equation. J. Math. Anal. Appl. 409, 74-83 (2014) · Zbl 1306.35128 · doi:10.1016/j.jmaa.2013.06.061
[30] Zhong, P.H., Yang, G.S.: Finite time blowup of multidimensional inhomogeneous isotropic Landau-Lifshitz equation on a hyperbolic space. Comput. Math. Appl. 73, 433-449 (2017) · Zbl 1368.35257 · doi:10.1016/j.camwa.2016.11.038
[31] Zhang, X.G., Liu, L.S., Wu, Y.H., Cui, Y.J.: Entire blow-up solutions for a quasilinear p-Laplacian Schrödinger equation with a non-square diffusion term. Appl. Math. Lett. 74, 85-93 (2017) · Zbl 1377.35012 · doi:10.1016/j.aml.2017.05.010
[32] Sun, F.L., Liu, L.S., Wu, Y.H.: Infinitely many sign-changing solutions for a class of biharmonic equation with p-Laplacian and Neumann boundary condition. Appl. Math. Lett. 73, 128-135 (2017) · Zbl 1377.35084 · doi:10.1016/j.aml.2017.05.001
[33] Wang, P.H., Wang, X.J.: The geometric properties of harmonic function on 2-dimensional Riemannian manifolds. Nonlinear Anal. 103, 2-8 (2014) · Zbl 1287.53057 · doi:10.1016/j.na.2014.03.002
[34] Wang, P.H., Zhao, L.L.: Some geometrical properties of convex level sets of minimal graph on 2-dimensional Riemannian manifolds. Nonlinear Anal. 130, 1-17 (2016) · Zbl 1329.53088 · doi:10.1016/j.na.2015.09.021
[35] Han, M.A., Sheng, L.J., Zhang, X.: Bifurcation theory for finitely smooth planar autonomous differential systems. J. Differ. Equ. 264(5), 3596-3618 (2018) · Zbl 1410.34116 · doi:10.1016/j.jde.2017.11.025
[36] Li, F.S., Gao, Q.Y.: Blow-up of solution for a nonlinear Petrovsky type equation with memory. Appl. Math. Comput. 274, 383-392 (2016) · Zbl 1410.35085
[37] Meng, F.W., Shao, J.: Some new Volterra-Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 223, 444-451 (2013) · Zbl 1329.45017
[38] Tian, H., Han, M.A.: Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems. J. Differ. Equ. 263(11), 7448-7474 (2017) · Zbl 1419.37052 · doi:10.1016/j.jde.2017.08.011
[39] Li, L.Z., Meng, F.W., Zheng, Z.W.: Oscillation results related to integral average technique for linear Hamiltonian systems. Dyn. Syst. Appl. 18, 725-736 (2009) · Zbl 1208.34040
[40] Li, L.Z., Meng, F.W., Zheng, Z.W.: Some new oscillation results for linear Hamiltonian systems. Appl. Math. Comput. 208, 219-224 (2009) · Zbl 1161.34002
[41] Zheng, Z.W.: Invariance of deficiency indices under perturbation for discrete Hamiltonian systems. J. Differ. Equ. Appl. 19(8), 1243-1250 (2013) · Zbl 1360.39007 · doi:10.1080/10236198.2012.734302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.