×

Lower and upper bounds for the blow-up time to a viscoelastic Petrovsky wave equation with variable sources and memory term. (English) Zbl 1523.35076

MSC:

35B44 Blow-up in context of PDEs
35L35 Initial-boundary value problems for higher-order hyperbolic equations
35L71 Second-order semilinear hyperbolic equations
35R09 Integro-partial differential equations
74D10 Nonlinear constitutive equations for materials with memory
Full Text: DOI

References:

[1] Wenying, C.; Yong, Z., Global non existence for a semilinear Petrovsky equation, Nonlinear Anal, 70, 3203-3208 (2009) · Zbl 1157.35324
[2] Han, X.; Wang, M., Asymptotic behavior for Petrovsky equation with localized damping, Acta Appl Math, 110, 3, 1057-1076 (2010) · Zbl 1191.35058
[3] Li, G.; Sun, Y.; Liu, W., Global existence, uniform decay and blow-up of solutions for a system of Petrovsky equations, Nonlinear Anal, 74, 4, 1523-1538 (2011) · Zbl 1211.35178
[4] Li, G.; Sun, Y.; Liu, W., Global existence and blow-up of solutions for a strongly damped Petrovsky system with nonlinear damping, Appl Anal, 91, 3, 575-586 (2012) · Zbl 1242.35062
[5] Yaojun, Y., Global existence and blow-up of solutions for a system of Petrovsky equations, Appl Anal, 96, 16, 2869-2890 (2017) · Zbl 1375.35280
[6] Zhou, J., Lower bounds for blow-up time of two nonlinear wave equations, Appl Math Lett, 45, 64-68 (2015) · Zbl 1316.35055
[7] Wang, Y.; Wang, Y., On the initial-boundary problem for fourth order wave equations with damping, strain and source terms, J Math Anal Appl, 405, 1, 116-127 (2013) · Zbl 1310.35175
[8] Jun, Z., Global existence and blow-up of solutions for a Kirchhoff type plate equation with damping, Appl Math Comput, 265, 807-818 (2015) · Zbl 1410.35237
[9] Li, F.; Bai, Y., Uniform rates of decay for nonlinear viscoelastic Marguerrevon Karman shallow shell system, J Math Anal Appl, 351, 522-535 (2009) · Zbl 1155.35058
[10] Li, F., Limit behavior of the solution to nonlinear viscoelastic Marguerre-von Karman shallow shells system, J Differ Equ, 249, 1241-1257 (2010) · Zbl 1425.74299
[11] Park, S-H; Kang, J-R., Blow-up of solutions for a viscoelastic wave equation with variable exponents, Math Meth Appl Sci, 42, 2083-2097 (2019) · Zbl 1437.35502
[12] Park, S-H., Blow-up for a viscoelastic von Karman equation with strong damping and variable exponent source terms, Bound Value Probl, 63, 2021 (2021) · Zbl 1486.35080 · doi:10.1186/s13661-021-01537-2
[13] Lagnese, JE., Asymptotic energy estimates for Kirchoff plates subject to weak viscoelastic damping (1989), Bassel: Birkhcauser-Verlag, Bassel
[14] Munoz Rivera, JE; Lapa, EC; Barreto, R., Decay rates for viscoelastic plates with memory, J Elast, 44, 61-87 (1996) · Zbl 0876.73037
[15] Alabau-Boussouira, F.; Cannarsa, P.; Sforza, D., Decay estimates for the second order evaluation equation with memory, J Funct Anal, 254, 1342-1372 (2008) · Zbl 1145.35025
[16] Liu, L.; Sun, F.; Wu, Y., Blow-up of solutions for a nonlinear Petrovsky type equation with initial data at arbitrary high energy level, Bound Value Probl, 15, 2019 (2019) · Zbl 1513.35390 · doi:10.1186/s13661-019-1136-x
[17] Fushan, L.; Qingyong, G., Blow-up of solution for a nonlinear Petrovsky type equation with memory, Appl Math Comput, 274, 383-392 (2016) · Zbl 1410.35085
[18] Tahamtani, F.; Shahrouzi, M., Existence and blow up of solutions to a Petrovsky equation withmemory and nonlinear source term, Bound Value Probl, 2012, 50 (2012) · Zbl 1275.35151
[19] Li, G.; Sun, Y.; Liu, W., On a symptotic behavior and blow-up of solutions for a nonlinear viscoelastic Petrovsky equation with positive initial energy, J Funct Spaces Appl, 2013 (2013) · Zbl 1270.35299
[20] Aboulaich, R.; Meskine, D.; Souissi, A., New diffusion models in image processing, Comput Math Appl, 56, 874-882 (2008) · Zbl 1155.35389
[21] Kbiri Alaoui, M.; Nabil, T.; Altanji, M., On some new nonlinear diffusion model for the image filtering, Appl Anal, 93, 2, 269-280 (2013) · Zbl 1295.35270
[22] Songzhe, L.; Gao, W.; Cao, C., Study of the solutions to a model porousmedium equation with variable exponent of nonlinearity, J Math Anal Appl, 342, 27-38 (2008) · Zbl 1140.35497
[23] Ting, TW., Certain non-steady flows of second-order fluids, Arch Ration Mech Anal, 14, 1-26 (1963) · Zbl 0139.20105
[24] Korpusov, MO; Sveshnikov, AG., Blow-up of solutions of Sobolev-type nonlinear equations with cubic sources, J Differ Equ, 42, 431-443 (2006) · Zbl 1131.35073
[25] Diening, L.; Růžička, M., Calderó n-Zygmund operators on generalized Lebesgue spaces \(####\) and problems related to fluid dynamics, J Reine Angew Math, 563, 197-220 (2003) · Zbl 1072.76071
[26] Samarskii, AA; Galaktionov, VA; Kurdyumov, SP, Blow-up in quasilinear parabolic equations (1995), Berlin (NY): Walter de Gruyter, Berlin (NY) · Zbl 1020.35001
[27] Pinasco, JP., Blow-up for parabolic and hyperbolic problems with variable exponents, Nonlinear Anal Theory Methods Appl, 71, 1094-1099 (2009) · Zbl 1170.35341
[28] Halsey, TC., Electrorheological fluids, Science, 258, 761-766 (1992)
[29] Acerbi, E.; Mingione, G., Regularity results for electrorheological fluids, the stationary case, C R Acad Sci Paris, 334, 817-822 (2002) · Zbl 1017.76098
[30] Růžička, M., Lecture Notes in Mathematics, 1748, Electrorheological fluids, modeling and mathematical theory (2000), New York: Springer, New York · Zbl 0968.76531
[31] Diening, L.; Hästo, P.; Harjulehto, P., Lebesgue and Sobolev spaces with variable exponents (2011), Berlin: Springer-Verlag, Berlin · Zbl 1222.46002
[32] Michael, R.; Barry, S., Scattering theory, III (1979), London, New York: Academic Press, London, New York · Zbl 0405.47007
[33] Erich, Z., Partial differential equations of applied mathematics, Pure and Applied Mathematics, seconded (1989), New York (NY): A Wiley-Interscience Publication, John Wiley and Sons, Inc, New York (NY) · Zbl 0699.35003
[34] Abita, R., Existence and asymptotic stability for the semilinear wave equation with variable-exponent nonlinearities, J Math Phys, 60 (2019) · Zbl 1435.35256
[35] Lions, JL., Quelques méthodes de résolution des problèmes aux limites non linéaires (1966), Paris: Dunod, Paris
[36] Lions, JL; Magenes, E., Problemes aux limites nonhomog ènes et applications (1968), Paris: Dunod, Paris · Zbl 0165.10801
[37] Abita, R., Existence and asymptotic behavior of solutions for degenerate nonlinear Kirchhoff strings with variable-exponent nonlinearities, Acta Math Vietnam, 46, 613-643 (2021) · Zbl 1471.35204
[38] Kalantarov, V.; Ladyzhenskaya, OA., The occurence of collapse for quasilinear equation of paprabolic and hyperbolic types, J Sov Math, 10, 53-70 (1978) · Zbl 0388.35039
[39] Payne, LE., Improperly posed problems in partial differential equations, Regional Conference Series in Applied Mathematics (1975), Pennsylvania (PA): Society for industrial and applied mathematics, Pennsylvania (PA) · Zbl 0302.35003
[40] Levin, HA., Some nonexistence and instability theorems for solutions of formally parabolic equations of the form \(Pu####\), Arch Ration Mech Anal, 51, 371-386 (1973) · Zbl 0278.35052
[41] Ali, K.; Khadijeh, B., Blow-up in a semilinear parabolic problem with variable source under positive initial energy, Appl Anal, 94, 9, 1888-1896 (2015) · Zbl 1331.35194
[42] Abita, R., Blow-up phenomenon for a semilinear pseudo-parabolic equation involving variable source, Appl Anal, 1-16 (2021)
[43] Abita, R., Blow-up phenomenon for a semilinear pseudo-parabolic equation involving variable source, Appl Anal, 101, 6, 1871-1879 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.