×

Nonseparation analysis-based finite/fixed-time synchronization of fully complex-valued impulsive dynamical networks. (English) Zbl 07834043

Summary: In this article, the impulsive effect is introduced into complex-variable networks (CO-VNs) and the finite/fixed-time synchronization (FI-T/FX-TS) of fully CO-VNs is discussed without using the classical decomposition approach. First of all, by applying the comparison principle, mathematical induction and the optimization method, two theorems are established to realize FI/FX-T stability of impulsive systems, and the estimated convergence time derived is more accurate. Furthermore, under the vector-valued signum function and different forms of norms in the complex field, several complex-valued control protocols are directly designed to realize synchronization. Besides, some effective conditions for FI/FX-TS are derived under the improved FI/FX-T stability results, which are simpler and easier to be verified than the previous decomposition results. To conclude, three numerical examples are provided to verify the obtained theoretical results.

MSC:

93B70 Networked control
34D20 Stability of solutions to ordinary differential equations
34A37 Ordinary differential equations with impulses
93D40 Finite-time stability
Full Text: DOI

References:

[1] Yang, M.; Abubakar, A.; Jiang, P., Deep learning and complex network theory based analysis on socialized manufacturing resources utilisations and an application case study. Concurr. Eng., 236-248 (2021)
[2] Munikoti, S.; Das, L.; Natarajan, B., Scalable graph neural network-based framework for identifying critical nodes and links in complex networks. Neurocomputing, 211-221 (2022)
[3] Narayanan, G.; Ali, M.; Alsulami, H.; Stamov, G.; Stamova, I.; Ahmad, B., Impulsive security control for fractional-order delayed multi-agent systems with uncertain parameters and switching topology under DoS attack. Inf. Sci., 169-190 (2022) · Zbl 1533.93323
[4] Yu, S.; Xia, J.; Zhuang, Y., Research progress and application of metabolic network model constrained by thermodynamic principles. China Biotechnol., 128-138 (2022)
[5] Hu, J.; Jia, C.; Yu, H.; Liu, H., Dynamic event-triggered state estimation for nonlinear coupled output complex networks subject to innovation constraints. IEEE/CAA J. Autom. Sin., 941-944 (2022)
[6] Udhayakumar, K.; Shanmugasundaram, S.; Kashkynbayev, A.; Janani, K.; Rakkiyappan, R., Saturated and asymmetric saturated impulsive control synchronization of coupled delayed inertial neural networks with time-varying delays. Appl. Math. Model., 528-544 (2023) · Zbl 1505.93115
[7] Kumar, R.; Kumar, U.; Das, S.; Qiu, J.; Lu, J., Effects of heterogeneous impulses on synchronization of complex-valued neural networks with mixed time-varying delays. Inf. Sci., 228-244 (2021) · Zbl 1485.93271
[8] Li, Y.; Lu, J.; Alofi, A.; Lou, J., Impulsive cluster synchronization for complex dynamical networks with packet loss and parameters mismatch. Appl. Math. Model., 215-223 (2022) · Zbl 1505.93189
[9] Ji, X.; Lu, J.; Jiang, B.; Shi, K., Distributed synchronization of delayed neural networks: delay-dependent hybrid impulsive control. IEEE Trans. Netw. Sci. Eng., 634-647 (2021)
[10] Li, X.; Li, P., Input-to-state stability of nonlinear systems: event-triggered impulsive control. IEEE Trans. Autom. Control, 1460-1465 (2021) · Zbl 1537.93629
[11] Li, X.; Li, P., Stability of time-delay systems with impulsive control involving stabilizing delays. Automatica (2021) · Zbl 1461.93436
[12] Zhang, J.; Chen, W.; Lu, X.; Wen, J., Fuzzy controller synthesis for nonlinear neutral state-delayed systems with impulsive effects. Inf. Sci., 293-313 (2021) · Zbl 1485.93321
[13] Gibbon, J.; Mcguinness, M., The real and complex Lorenz equations in rotating fluids and lasers. Physica D, 108-122 (1982) · Zbl 1194.76280
[14] Hirose, A.; Yoshida, S., Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence. IEEE Trans. Neural Netw. Learn. Syst., 541-551 (2012)
[15] Nguyen, K.; Fookes, C.; Sridharan, S.; Ross, A., Complex-valued iris recognition network. IEEE Trans. Pattern Anal. Mach. Intell., 182-196 (2022)
[16] Jankowski, S.; Lozowski, A.; Zurada, J., Complex-valued multistate neural associative memory. IEEE Trans. Neural Netw., 1491-1496 (1996)
[17] Hu, C.; He, H.; Jiang, H., Synchronization of complex-valued dynamic networks with intermittently adaptive coupling: a direct error method. Automatica (2020) · Zbl 1430.93117
[18] Wang, P.; Zhang, P.; Su, H., Stabilization of stochastic uncertain complex-valued delayed networks via aperiodically intermittent nonlinear control. IEEE Trans. Syst. Man Cybern. Syst., 649-662 (2018)
[19] Zheng, B.; Wang, Z., Adaptive synchronization of fractional-order complex-valued coupled neural networks via direct error method. Neurocomputing, 114-122 (2022)
[20] Yu, J.; Hu, C.; Jiang, H.; Wang, L., Exponential and adaptive synchronization of inertial complex-valued neural networks: a non-reduced order and non-separation approach. Neural Netw., 50-59 (2020) · Zbl 1443.93117
[21] Yu, Y.; Zhang, Z.; Zhong, M.; Wang, Z., Pinning synchronization and adaptive synchronization of complex-valued inertial neural networks with time-varying delays in fixed-time interval. J. Franklin Inst., 1434-1456 (2022) · Zbl 1481.93111
[22] Cui, E.; Jing, Y.; Gao, X.; Yang, D., Adaptive synchronization of complex dynamic networks with switching parameters subject to state constraints in power system. J. Franklin Inst., 9243-9262 (2021) · Zbl 1478.93311
[23] Sun, J.; Zang, M.; Liu, P.; Wang, Y., A secure communication scheme of three-variable chaotic coupling synchronization based on DNA chemical reaction networks. IEEE Trans. Signal Process., 2362-2373 (2022) · Zbl 07911407
[24] Mohadeszadeh, M.; Pariz, N., An application of adaptive synchronization of uncertain chaotic system in secure communication systems. Int. J. Model. Simul., 143-152 (2022)
[25] Mediano, P.; Rosas, F.; Farah, J.; Shanahan, M.; Bor, D.; Barrett, A., Integrated information as a common signature of dynamical and information-processing complexity. Chaos (2022)
[26] Liao, Y.; Wang, X., Stationary-frame complex-valued frequency-domain modeling of three-phase power converters. IEEE J. Emerg. Sel. Top. Power Electron., 1922-1933 (2019)
[27] Nian, F.; Li, J., The module-phase synchronization of complex-valued neural networks with time-varying delay and stochastic perturbations. J. Syst. Sci. Complex., 2139-2154 (2021) · Zbl 1485.93494
[28] Zhang, H.; Wang, X., Complex projective synchronization of complex-valued neural network with structure identification. J. Franklin Inst., 5011-5025 (2017) · Zbl 1367.93155
[29] Yang, S.; Yu, J.; Hu, C.; Jiang, H., Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks. Neural Netw., 104-113 (2018) · Zbl 1441.93287
[30] Kumar, A.; Das, S.; Yadav, V., Global quasi-synchronization of complex-valued recurrent neural networks with time-varying delay and interaction terms. Chaos Solitons Fractals (2021) · Zbl 1500.93129
[31] Guo, R.; Lv, W.; Zhang, Z., Quasi-projective synchronization of stochastic complex-valued neural networks with time-varying delay and mismatched parameters. Neurocomputing, 184-192 (2020)
[32] Zhang, L.; Yang, X.; Xu, C.; Feng, J., Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbation via time-delayed impulsive control. Appl. Math. Comput., 22-30 (2017) · Zbl 1411.93193
[33] Shen, Y.; Liu, X., Event-based master-slave synchronization of complex-valued neural networks via pinning impulsive control. Neural Netw., 374-385 (2022) · Zbl 1526.93162
[34] Wang, X.; Park, J.; Yang, H.; Zhong, S., A new settling-time estimation protocol to finite-time synchronization of impulsive memristor-based neural networks. IEEE Trans. Cybern., 4312-4322 (2020)
[35] Yang, X.; Lu, J., Finite-time synchronization of coupled networks with Markovian topology and impulsive effects. IEEE Trans. Autom. Control, 2256-2261 (2016) · Zbl 1359.93459
[36] Liu, H.; Zhao, F.; Wang, M.; Qiu, J.; Chen, X., Finite-time pinning impulsive synchronization of stochastic complex networks with mixed delays. Appl. Math. Model., 840-850 (2023) · Zbl 1510.93350
[37] Yang, D.; Li, X.; Song, S., Finite-time synchronization for delayed complex dynamical networks with synchronizing or desynchronizing impulses. IEEE Trans. Neural Netw. Learn. Syst., 376-476 (2022)
[38] Yu, T.; Cao, J.; Lu, K., Finite-time synchronization control of networked chaotic complex-valued systems with adaptive coupling. IEEE Trans. Netw. Sci. Eng., 2510-2520 (2022)
[39] Xiong, K.; Yu, J.; Hu, C.; Wen, S.; Jiang, H., Finite-time synchronization of fully complex-valued networks with or without time-varying delays via intermittent control. Neurocomputing, 173-184 (2020)
[40] Hou, T.; Yu, J.; Hu, C.; Jiang, H., Finite-time synchronization of fractional-order complex-variable dynamic networks. IEEE Trans. Syst. Man Cybern. Syst., 4297-4307 (2021)
[41] Yu, T.; Cao, J.; Rutkowski, L.; Luo, Y., Finite-time synchronization of complex-valued memristive-based neural networks via hybrid control. IEEE Trans. Neural Netw. Learn. Syst., 3938-3947 (2021)
[42] Pan, J.; Zhang, Z., Finite-time synchronization for delayed complex-valued neural networks via the exponential-type controllers of time variable. Chaos Solitons Fractals (2021) · Zbl 1498.93293
[43] Huang, Y.; Wu, F., Finite-time passivity and synchronization of coupled complex-valued memristive neural networks. Inf. Sci., 775-800 (2021) · Zbl 07786228
[44] Song, X.; Sun, X.; Man, J.; Song, S.; Wu, Q., Synchronization of fractional-order spatiotemporal complex-valued neural networks in finite-time interval and its application. J. Franklin Inst., 8207-8225 (2021) · Zbl 1472.93165
[45] Zhang, C.; Wang, X.; Wang, S.; Zhou, W.; Xia, Z., Finite-time synchronization for a class of fully complex-valued networks with coupling delay. IEEE Access, 17923-17932 (2018)
[46] Zhang, C.; Wang, X.; Unar, S.; Wang, Y., Finite-time synchronization of a class of nonlinear complex-valued networks with time-varying delays. Physica A (2019) · Zbl 1532.93012
[47] Polyakov, A., Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control, 2106-2110 (2012) · Zbl 1369.93128
[48] Hu, C.; Jiang, H., Special functions-based fixed-time estimation and stabilization for dynamic systems. IEEE Trans. Syst. Man Cybern. Syst., 3251-3262 (2021)
[49] Yang, X.; Ho, D.; Feng, Z., Fixed-time synchronization of complex networks with impulsive effects via nonchattering control. IEEE Trans. Autom. Control, 5511-5521 (2017) · Zbl 1390.93393
[50] Li, H.; Li, C.; Huang, T.; Ouyang, D., Fixed-time stability and stabilization of impulsive dynamical systems. J. Franklin Inst., 8626-8644 (2017) · Zbl 1380.93188
[51] Ao, W.; Ma, T.; Sanchez, R.; Gan, H., Finite-time and fixed-time impulsive synchronization of chaotic systems. J. Franklin Inst., 11545-11557 (2020) · Zbl 1450.93052
[52] Ren, H.; Shi, P.; Deng, F.; Peng, Y., Fixed-time synchronization of delayed complex dynamical systems with stochastic perturbation via impulsive pinning control. J. Franklin Inst., 12308-12325 (2020) · Zbl 1454.93289
[53] Pang, L.; Hu, C.; Yu, J.; Jiang, H., Fixed-time synchronization for fuzzy-based impulsive complex networks. Mathematics, 1533 (2022)
[54] Khanzadeh, A.; Pourgholi, M., Fixed-time sliding mode controller design for synchronization of complex dynamical networks. Nonlinear Dyn., 2637-2649 (2017) · Zbl 1398.93276
[55] Yang, S.; Zhang, W.; Ruan, D.; Yang, T.; Li, Y., Fast fixed-time impulsive bipartite synchronization of TS fuzzy complex networks with signed graphs. Nonlinear Anal. Hybrid Syst. (2023) · Zbl 1511.93114
[56] Pang, L.; Hu, C.; Yu, J.; Wang, L.; Jiang, H., Fixed/preassigned-time synchronization for impulsive complex networks with mismatched parameters. Neurocomputing, 462-476 (2022)
[57] Wang, D.; Li, L., Fixed-time synchronization of delayed memristive neural networks with impulsive effects via novel fixed-time stability theorem. Neural Netw., 75-85 (2023) · Zbl 1526.34049
[58] Jamal, M.; Mapui, A.; Das, S.; Mukhopadhyay, S., Further results on fixed-time synchronization of the memristor neural networks with impulsive effects. Commun. Nonlinear Sci. Numer. Simul. (2023) · Zbl 1507.93203
[59] Feng, L.; Yu, J.; Hu, C.; Yang, C.; Jiang, H., Nonseparation method-based finite/fixed-time synchronization of fully complex-valued discontinuous neural networks. IEEE Trans. Cybern., 3212-3223 (2021)
[60] Ding, X.; Cao, J.; Alsaedi, A.; Alsaadi, F.; Hayat, T., Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions. Neural Netw., 42-55 (2017) · Zbl 1439.93015
[61] Song, X.; Man, J.; Song, S.; Zhang, Y.; Ning, Z., Finite/fixed-time synchronization for Markovian complex-valued memristive neural networks with reaction-diffusion terms and its application. Neurocomputing, 131-142 (2020)
[62] Zhang, Y.; Deng, S., Fixed-time synchronization of complex-valued memristor-based neural networks with impulsive effects. Neural Process. Lett., 1263-1290 (2020)
[63] Xiong, K.; Yu, J.; Hu, C.; Jiang, H., Synchronization in finite/fixed time of fully complex-valued dynamical networks via nonseparation approach. J. Franklin Inst., 473-493 (2020) · Zbl 1429.93145
[64] Hu, C.; He, H.; Jiang, H., Fixed/preassigned-time synchronization of complex networks via improving fixed-time stability. IEEE Trans. Cybern., 2882-2892 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.