×

Global structure of positive solution sets of nonlinear operator equations. (English) Zbl 1246.47013

Existence of unbounded maximal continua of positive solutions bifurcating from infinity for a class of nonlinear operator equations in the framework of Banach spaces ordered by a positive cone is studied in this article. The main salient feature in this paper is that, contrary to well-known results in this direction, the nonlinear terms involved are not asymptotically linear. The method of proof differs from the usual ones in this domain: first a sequence of unbounded subcontinua in a pipe (a notion which is introduced in the paper) bifurcating from nontrivial solutions is obtained by using topological degree, and then a limiting process (superior limit) in metric spaces gives the result. This argument leads to the main result (Theorem 3.1), and then a long list of variants (Theorems 3.2 to 3.10) proving existence of at least an asymptotic bifurcation point is given. The fixed point index is also an important tool for the proofs. An application is given to a nonlinear elliptic problem on a domain which is the complement of a disk in the space \(\mathbb{R}^n\). It is allowed in these results that the nonlinear terms may be non-positone.

MSC:

47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces
47H10 Fixed-point theorems
58E07 Variational problems in abstract bifurcation theory in infinite-dimensional spaces
47H11 Degree theory for nonlinear operators
47J10 Nonlinear spectral theory, nonlinear eigenvalue problems
47J15 Abstract bifurcation theory involving nonlinear operators
35J65 Nonlinear boundary value problems for linear elliptic equations
Full Text: DOI

References:

[1] Ambrosetti A., Hess P.: Positive solutions of asymptotically linear elliptic eigenvalue problems. J. Math. Anal. Appl. 73(2), 411–422 (1980) · Zbl 0433.35026 · doi:10.1016/0022-247X(80)90287-5
[2] Ambrosetti A., Arcoya D., Buffoni B.: Positive solutions for some semipositone problems via bifurcation theory. Differ. Integral Equ. 7(3), 655–663 (1994) · Zbl 0808.35030
[3] Maier-Paape S., Schmitt K.: Asymptotic behaviour of solution continua for semilinear elliptic problems. Can. Appl. Math. Q. 4, 211–228 (1996) · Zbl 0872.35037
[4] Schaaf R., Schmitt K.: Asymptotic behaviour of positive solution branches of elliptic problems with linear part at resonance. Z Angew. Math. Phys. 43, 645–676 (1992) · Zbl 0759.35011 · doi:10.1007/BF00946255
[5] Davidson F.A., Rynne B.P.: Asymptotic oscillations of continua of positive solutions of a semilinear Sturm–Liouville problem. J. Math. Anal. Appl. 252, 617–630 (2000) · Zbl 0974.34023 · doi:10.1006/jmaa.2000.7009
[6] Rynne B.P.: Oscillating global continua of positive solutions of nonlinear elliptic problems. Proc. Am. Math. Soc. 128, 229–236 (2000) · Zbl 0932.35082 · doi:10.1090/S0002-9939-99-05168-0
[7] Rynne Bryan P.: Bifurcation from zero or infinity in Sturm–Liouville problems which are not linearizable. J. Math. Anal. Appl. 228(1), 141–156 (1998) · Zbl 0918.34028 · doi:10.1006/jmaa.1998.6122
[8] Ruyun M., Yulian A.: Global structure of positive solutions for nonlocal boundary value problems involving integral conditions. Nonlinear Anal. 71, 4364–4376 (2009) · Zbl 1178.34029 · doi:10.1016/j.na.2009.02.113
[9] Rabinowitz P.H.: Some global results for nonlinear eigenvalues. J. Funct. Anal. 7, 487–513 (1971) · Zbl 0212.16504 · doi:10.1016/0022-1236(71)90030-9
[10] Rabinowitz P.H.: On bifurcation from infinity J. Differ. Equ. 14, 462–475 (1973) · Zbl 0272.35017 · doi:10.1016/0022-0396(73)90061-2
[11] Amann H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976) · Zbl 0345.47044 · doi:10.1137/1018114
[12] Dancer E.N.: Solution branches for mappings in cones and applications. Bull. Austral. Math. Soc. 11, 133–145 (1974) · Zbl 0284.47033 · doi:10.1017/S0004972700043707
[13] Dancer E.N.: Global solution branches for positive mappings. Arch. Rat. Mech. Anal. 52, 181–192 (1973) · Zbl 0275.47043 · doi:10.1007/BF00282326
[14] Dajun G., Jingxian S.: Some global generalizations of the Birkhoff–Kellogg theorem and applications. J. Math. Anal. Appl. 129, 231–242 (1988) · Zbl 0661.47049 · doi:10.1016/0022-247X(88)90245-4
[15] Deimling K.: Nonlinear Functional Analysis. Springer, Berlin (1985) · Zbl 0559.47040
[16] Drábek P., Milota J.: Methods of Nonlinear Analysis Applications to Differential Equations. Birkhäuser, Basel (2007) · Zbl 1176.35002
[17] Jingxian S., Fumin S.: A property of connected components and its applications. Topology Appl. 125, 553–560 (2002) · Zbl 1016.54019 · doi:10.1016/S0166-8641(01)00301-7
[18] Xian X., Jipu M.: A note on singular nonlinear boundary value problems. J. Math. Anal. Appl. 293(1), 108–124 (2004) · Zbl 1057.34007 · doi:10.1016/j.jmaa.2003.12.017
[19] Castro A., Shivaji R.: Nonnegative solutions for a class of nonpositone problems. Proc. Roy. Soc. Edin. 108(A), 291–302 (1988) · Zbl 0659.34018 · doi:10.1017/S0308210500014670
[20] Anuradha V., Hai D.D., Shivaji R.: Existence results for superlinear semipositone BVP’S. Proc. Am. Math. Soc. 124, 757–763 (1996) · Zbl 0857.34032 · doi:10.1090/S0002-9939-96-03256-X
[21] Lions P.L.: On the existence of positive solutions of semilinear elliptic equations. Siam Rev. 24, 441–467 (1982) · Zbl 0511.35033 · doi:10.1137/1024101
[22] Castro A., Gadam S., Shivaji R.: Branches of radial solutions for semipositone problems. J. Differ. Equ. 120(1), 30–45 (1995) · Zbl 0838.34037 · doi:10.1006/jdeq.1995.1104
[23] Castro A., Gadam S., Shivaji R.: Positive solution curves of semipositone problems with concave nonlinearities. Proc. Roy. Soc. Edin. 127, 921–934 (1997) · Zbl 0884.35040 · doi:10.1017/S0308210500026809
[24] Castro A., Shivaji R.: Nonnegative solutions to a semilinear dirichlet problem in a ball are positive and radially symmetric. Comm. Partial Differ. Equ. 14, 1091–1100 (1989) · Zbl 0688.35025 · doi:10.1080/03605308908820645
[25] Castro A., Shivaji R.: Positive solutions for a concave semipositone dirichlet problem. Nonlinear Anal. TMA 31(1/2), 91–98 (1998) · Zbl 0910.34034 · doi:10.1016/S0362-546X(96)00189-7
[26] Baum, J.D.: Elements of Point Set Topology (in chinese, translated by Pu Sili). High Education Press, Beijing (1981) · Zbl 0528.76061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.