×

Longitudinal wall motion during peristalsis and its effect on reflux. (English) Zbl 1539.76293

Summary: In this study, for the first time, we consider longitudinal motion of the walls during peristalsis in a distensible tube and how this affects backward (or retrograde) flow, i.e. peristaltic reflux. Building on the analytical model developed by A. H. Shapiro et al. [J. Fluid Mech. 37, No. 4, 799–825 (1969; doi:10.1017/S0022112069000899)] based on lubrication theory, we model peristalsis as a two-dimensional infinite sinusoidal wavetrain. We develop an objective function with high mechanical pumping efficiency and low reflux to find optimal peristalsis conditions. We show that optimal wall longitudinal motion contributes substantially to limiting reflux during peristalsis. The results suggest that the optimal form of wall longitudinal velocity is a linear function of the wall transverse coordinate, moving forward with the wave when the tube is distended and retracting when contracted. Our results are in general agreement with clinical observations of ureteral peristalsis.

MSC:

76Z05 Physiological flows
76D08 Lubrication theory
76D05 Navier-Stokes equations for incompressible viscous fluids
76D55 Flow control and optimization for incompressible viscous fluids
92C35 Physiological flow

References:

[1] Abd Elnaby, M.A. & Haroun, M.H.2008A new model for study the effect of wall properties on peristaltic transport of a viscous fluid. Commun. Nonlinear Sci. Numer. Simul.13 (4), 752-762. · Zbl 1221.76263
[2] Boyarsky, S. & Labay, P.1981 Principles of ureteral physiology. In The Ureter (ed. H. Bergman), pp. 71-104. Springer.
[3] Dormand, J.R. & Prince, P.J.1980A family of embedded Runge-Kutta formulae. J. Comput. Appl. Maths6 (1), 19-26. · Zbl 0448.65045
[4] Fung, Y.C. & Yih, C.S.1968Peristaltic transport. J. Appl. Mech.35 (4), 669-675. · Zbl 0182.59302
[5] Gad, N.S.2014Effects of hall currents on peristaltic transport with compliant walls. Appl. Maths Comput.235, 546-554. · Zbl 1334.76187
[6] Harris, C.R., et al.2020Array programming with numpy. Nature585 (7825), 357-362.
[7] Hosseini, G., Ji, C., Xu, D., Rezaienia, M.A., Avital, E., Munjiza, A., Williams, J.J.R. & Green, J.S.A.2018A computational model of ureteral peristalsis and an investigation into ureteral reflux. Biomed. Engng Lett.8 (1), 117-125.
[8] Hunter, J.D.2007Matplotlib: a 2D graphics environment. Comput. Sci. Engng9 (3), 90-95.
[9] Jaffrin, M.Y. & Shapiro, A.H.1971Peristaltic pumping. Annu. Rev. Fluid Mech.3, 13-37.
[10] Jiménez-Lozano, J., Sen, M. & Dunn, P.F.2009Particle motion in unsteady two-dimensional peristaltic flow with application to the ureter. Phys. Rev. E Stat. Nonlinear Soft Matt. Phys.79 (4 Pt 1), 041901.
[11] Jörgensen, T.M.1985Dynamics of the urinary tract in longterm vesico-ureteric reflux and infravesical obstruction in pigs. IV. Scand. J. Urol. Nephrol.19 (3), 193-202.
[12] Jörgensen, T.M.1986Pathogenetic factors in vesicoureteral reflux. Neurourol. Urodyn.5 (2), 153-183.
[13] Jörgensen, T.M. & Stödkilde-Jörgensen, H.1985Dynamics of the urinary tract during induced vesico-ureteric reflux in pigs. II. Scand. J. Urol. Nephrol.19 (3), 173-182.
[14] Kalayeh, K., Fowlkes, J.B., Schultz, W.W. & Sack, B.S.2020Ureterovesical junction deformation during urine storage in the bladder and the effect on vesicoureteral reflux. J. Biomech.113, 110123.
[15] Kalayeh, K., Fowlkes, J.B., Schultz, W.W. & Sack, B.S.2021The 5:1 rule overestimates the needed tunnel length during ureteral reimplantation. Neurourol. Urodyn.40 (1), 85-94.
[16] Kelley, C.T.1995Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied Mathematics. · Zbl 0832.65046
[17] Keni, L.G., Hayoz, M.J., Khader, S.M.A., Hegde, P., Prakashini, K., Tamagawa, M., Satish Shenoy, B., Hameed, B.M.Z. & Zuber, M.2021Computational flow analysis of a single peristaltic wave propagation in the ureter. Comput. Meth. Programs Biomed.210, 106378.
[18] Kiil, F.1973 Urinary flow and ureteral peristalsis. In Urodynamics, pp. 57-70. Springer.
[19] Li, M. & Brasseur, J.G.1993Non-steady peristaltic transport in finite-length tubes. J. Fluid Mech.248, 129-151. · Zbl 0777.76102
[20] Liron, N.1976On peristaltic flow and its efficiency. Bull. Math. Biol.38 (06), 573-596. · Zbl 0343.76049
[21] Lykoudis, P.S. & Roos, R.1970The fluid mechanics of the ureter from a lubrication theory point of view. J. Fluid Mech.43 (4), 661-674.
[22] Mackinnon, K.J., Foote, J.W., Wiglesworth, F.W. & Blennerhassett, J.B.1970The pathology of the adynamic distal ureteral segment. J. Urol.103 (2), 134-137.
[23] Mancha Sánchez, E., Gómez Blanco, J.C., Cruz Conty, J.E.D.L., Sánchez Margallo, F.M., Pagador Carrasco, J.B. & Soria Gálvez, F.2020 Simplified model of ureteral peristalsis bolus using fluid structure interaction. In Actas de las XXXIX Jornadas de Automática, Badajoz, 5-7 de Septiembre de 2018. Universidade da Coruña. Servizo de Publicacións.
[24] Manton, M.J.1975Long-wavelength peristaltic pumping at low Reynolds number. J. Fluid Mech.68 (3), 467-476. · Zbl 0306.76080
[25] Osman, F., Nádasy, G.L., Monos, E., Nyirád Y, P. & Romics, I.2009A novel videomicroscopic technique for studying rat ureteral peristalsis in vivo. World J. Urol.27 (2), 265-270.
[26] Razavi, S.E. & Jouybar, M.2018Fluid-structure interaction simulation of ureter with vesicoureteral reflux and primary obstructed megaureter. Biomed. Mater. Engng29 (6), 821-837.
[27] Shapiro, A.H.1967 Pumping and retrograde diffusion in peristaltic waves. In Proceedings of a Workshop on Ureteral Reflux in Children, pp. 109-133. National Academy of Sciences.
[28] Shapiro, A.H. & Jaffrin, M.Y.1971Reflux in peristaltic pumping: is it determined by the Eulerian or Lagrangian mean velocity. J. Appl. Mech.38 (4), 1060-1062.
[29] Shapiro, A.H., Jaffrin, M.Y. & Weinberg, S.L.1969Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech.37 (4), 799-825.
[30] Som, S.K., Biswas, G. & Chakraborty, S.2011Introduction to Fluid Mech & Fluid Machines, 3rd edn. Tata McGraw-Hill Education.
[31] Takabatake, S. & Ayukawa, K.1982Numerical study of two-dimensional peristaltic flows. J. Fluid Mech.122 (1), 439-465. · Zbl 0508.76138
[32] 2022 Pandas-dev/pandas: Pandas. Zenodo.
[33] Vahidi, B., Fatouraee, N., Imanparast, A. & Moghadam, A.N.2011A mathematical simulation of the ureter: effects of the model parameters on ureteral pressure/flow relations. Trans. ASME J. Biomech. Engng133 (3), 031004.
[34] Virtanen, P., et al.2020SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Meth.17 (3), 261-272.
[35] Weinberg, S.L., Eckstein, E.C. & Shapiro, A.H.1971An experimental study of peristaltic pumping. J. Fluid Mech.49 (03), 461-481.
[36] Weiss, R.M.1978Uretral function. Urology12 (2), 114-133.
[37] Woodburne, R.T. & Lapides, J.1972The ureteral lumen during peristalsis. Am. J. Anat.133 (3), 255-258.
[38] Zheng, S., Carugo, D., Mosayyebi, A., Turney, B., Burkhard, F., Lange, D., Obrist, D., Waters, S. & Clavica, F.2021Fluid mechanical modeling of the upper urinary tract. WIREs Mech. Dis.13 (6), e1523.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.