×

The ellipsoidal vortex: a novel approach to geophysical turbulence. (English) Zbl 1375.86004

Summary: We review the development of the ellipsoidal vortex model within the field of geophysical fluid dynamics. This vortex model is built on the classical potential theory of ellipsoids and applies to large-scale fluid flows, such as those found in the atmosphere and oceans, where the dynamics are strongly affected by the Earth’s rotation. In this large-scale limit the governing equations reduce to the quasi-geostrophic system, where all the dynamics depends on a single scalar field, the potential vorticity, which is a dynamical marker for vortices. The solution of this system is achieved by the inversion of a Poisson equation, that in the case of an ellipsoidal vortex can be solved exactly. From this ellipsoidal solution equilibria have been determined and their stability properties have been studied. Many studies have shown that this ellipsoidal vortex model, while being conceptually simple, is an extremely powerful tool in eliciting some of the fundamental characteristics of turbulent geophysical flows.

MSC:

86A05 Hydrology, hydrography, oceanography
76D17 Viscous vortex flows

References:

[1] Chelton, D. B.; Schlax, M. G.; Samelson, R. M., Global observations of nonlinear mesoscale eddies, Progress in Oceanography, 91, 2, 167-216 (2011) · doi:10.1016/j.pocean.2011.01.002
[2] Zhang, Z.; Wang, W.; Qiu, B., Oceanic mass transport by mesoscale eddies, Science, 345, 322-324 (2014) · doi:10.1126/science.1252418
[3] McWilliams, J. C.; Weiss, J. B.; Yavneh, I., Anisotropy and coherent vortex structures in planetary turbulence, Science, 264, 5157, 410-413 (1994) · doi:10.1126/science.264.5157.410
[4] Shaper Smith, K.; Vallis, G. K., The scales and equilibration of Midocean Eddies: freely evolving flow, Journal of Physical Oceanography, 31, 2, 554-571 (2001) · doi:10.1175/1520-0485(2001)03160;0554:tsaeom62;2.0.co;2
[5] Mckiver, W. J.; Dritschel, D. G., Balance in non-hydrostatic rotating stratified turbulence, Journal of Fluid Mechanics, 596, 201-219 (2008) · Zbl 1168.76328 · doi:10.1017/S0022112007009421
[6] Kirchhoff, G.
[7] Love, A. E., On the stability of certain vortex motions, Proceedings of the London Mathematical Society, 25, 18-42 (1893) · JFM 25.1467.02
[8] Zhmur, V. V.; Pankratov, K. K., Dynamics of a semi-ellipsoidal subsurface vortex in a nonuniform flow, Okeanologia, 29, 150-154 (1989)
[9] Zhmur, V. V.; Pankratov, K. K., Dynamics of mesoscale eddy formation in the field currents of large intensive vortex, Okeanologia, 30, 124-129 (1990)
[10] Meacham, S. P., Quasigeostrophic, ellipsoidal vortices in a stratified fluid, Dynamics of Atmospheres and Oceans, 16, 3-4, 189-223 (1992) · doi:10.1016/0377-0265(92)90007-G
[11] Charney, J. G., On the scale of atmospheric motions, Geofysiske Publikasjoner, 17, 2, 3-17 (1948)
[12] MacClaurin, C., A Treatise on Fluxions, 1-2 (1742), Edinburgh, UK: Printed by T. W. and T. Ruddimans, Edinburgh, UK
[13] Laplace, P. S., Laplace, Pierre-Simon (1749-1827). Théorie du Mouvement et de la Figure Elliptique Des Planètes. Paris: Imprimerie de Ph.-D. Pierres (1784)
[14] Todhunter, I., History of the Mathematical Theories of Attraction and the Figure of the Earth (1873), London, UK: Constable, London, UK · JFM 05.0052.02
[15] Chandrasekhar, S., Ellipsoidal Figures of Equilibrium (1969), Dover · Zbl 0213.52304
[16] Dassios, G., Ellipsoidal Harmonics: Theory and Applications (2012), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1293.65164
[17] McKiver, W. J.; Dritschel, D. G., The motion of a fluid ellipsoid in a general linear background flow, Journal of Fluid Mechanics, 474, 147-173 (2003) · Zbl 1065.76197 · doi:10.1017/s0022112002002859
[18] Dritschel, D. G.; Reinaud, J. N.; McKiver, W. J., The quasi-geostrophic ellipsoidal vortex model, Journal of Fluid Mechanics, 505, 201-223 (2004) · Zbl 1067.76018 · doi:10.1017/s0022112004008377
[19] Pedlosky, J., Geophysical Fluid Dynamics (1979), New York, NY, USA: Springer, New York, NY, USA · Zbl 0429.76001
[20] Charney, J. G., Geostrophic turbulence, Journal of the Atmospheric Sciences, 28, 6, 1087-1095 (1971) · doi:10.1175/1520-0469(1971)028x0003C;1087:gtx003E;2.0.co;2
[21] Hoskins, B. J.; McIntyre, M. E.; Robertson, A. W., On the use and significance of isentropic potential vorticity maps., Quarterly Journal—Royal Meteorological Society, 111, 470, 877-946 (1985) · doi:10.1002/qj.49711147002
[22] Holland, W. R.; O’Brien, J. J., Quasigeostrophic modelling of Eddy-resolved ocean circulation, Advanced Physical Oceanographic Numerical Modelling. Advanced Physical Oceanographic Numerical Modelling, NATO ASI Series C: Mathematical and Physical, 186, 203-231 (1986), Dordrecht, Netherlands: Springer, Dordrecht, Netherlands · doi:10.1007/978-94-017-0627-8_14
[23] Deremble, B.; Lapeyre, G.; Ghil, M., Atmospheric dynamics triggered by an oceanic SST front in a moist quasigeostrophic model, Journal of the Atmospheric Sciences, 69, 5, 1617-1632 (2012) · doi:10.1175/JAS-D-11-0288.1
[24] Zhmur, V. V.; Shchepetkin, A. F., Evolution of an ellipsoidal vortex in a stratified ocean. Survivability of the vortex in a flow with vertical shear, Izvestiâ Akademii Nauk SSSR. Fizika Atmosfery i Okeana, 27, 492-503 (1991)
[25] Lyttleton, R. A., The Stability of Rotating Liquid Masses (1953), Paris, France: Cambridge University, Paris, France · Zbl 0051.18501
[26] Hobson, E. W., Theory of Spherical and Ellipsoidal Harmonics (1931), Cambridge University Press · JFM 57.0405.06
[27] Meacham, S. P.; Pankratov, K. K.; Shchepetkin, A. F.; Zhmur, V. V., The interaction of ellipsoidal vortices with background shear flows in a stratified fluid, Dynamics of Atmospheres and Oceans, 21, 2-3, 167-212 (1994) · doi:10.1016/0377-0265(94)90008-6
[28] Meacham, S. P.; Morrison, P. J.; Flierl, G. R., Hamiltonian moment reduction for describing vortices in shear, Physics of Fluids, 9, 8, 2310-2328 (1997) · Zbl 1185.76903 · doi:10.1063/1.869352
[29] Hashimoto, H.; Shimonishi, T.; Miyazaki, T., Quasigeostrophic ellipsoidal vortices in a two-dimensional strain field, Journal of the Physical Society of Japan, 68, 12, 3863-3880 (1999) · Zbl 1079.86500 · doi:10.1143/JPSJ.68.3863
[30] Reinaud, J. N.; Dritschel, D. G.; Koudella, C. R., The shape of vortices in quasi-geostrophic turbulence, Journal of Fluid Mechanics, 474, 175-192 (2003) · Zbl 1022.76025 · doi:10.1017/S0022112002002719
[31] Dritschel, D. G.; Scott, R. K.; Reinaud, J. N., The stability of quasi-geostrophic ellipsoidal vortices, Journal of Fluid Mechanics, 536, 401-421 (2005) · Zbl 1122.76031 · doi:10.1017/S0022112005004921
[32] Miyazaki, T.; Ueno, K.; Shimonishi, T., Quasigeostrophic, tilted spheroidal vortices, Journal of the Physical Society of Japan, 68, 8, 2592-2601 (1999) · Zbl 1083.76514 · doi:10.1143/JPSJ.68.2592
[33] McKiver, W. J.; Dritschel, D. G., The stability of a quasi-geostrophic ellipsoidal vortex in a background shear flow, Journal of Fluid Mechanics, 560, 1-17 (2006) · Zbl 1122.76036 · doi:10.1017/s0022112006000462
[34] Reinaud, J. N.; Dritschel, D. G., The merger of vertically offset quasi-geostrophic vortices, Journal of Fluid Mechanics, 469, 287-315 (2002) · Zbl 1152.76347 · doi:10.1017/S0022112002001854
[35] Zhmur, V. V.; Pankratov, K. K., Distant interaction of an ensemble of quasigeostrophic ellipsoidal eddies: Hamiltonian formulation, Atmospheric and Oceanic Physics, 26, 972-981 (1990)
[36] Miyazaki, T.; Furuichi, Y.; Takahashi, N., Quasigeostrophic ellipsoidal vortex model, Journal of the Physical Society of Japan, 70, 7, 1942-1953 (2001) · Zbl 1079.86501 · doi:10.1143/jpsj.70.1942
[37] Li, Y.; Taira, H.; Takahashi, N.; Miyazaki, T., Refinements on the quasi-geostrophic ellipsoidal vortex model, Physics of Fluids, 18, 7 (2006) · Zbl 1185.86007 · doi:10.1063/1.2221351
[38] Martinsen-Burrell, N.; Julien, K.; Petersen, M. R.; Weiss, J. B., Merger and alignment in a reduced model for three-dimensional quasigeostrophic ellipsoidal vortices, Physics of Fluids, 18, 5 (2006) · Zbl 1185.76478 · doi:10.1063/1.2191887
[39] Reinaud, J. N.; Dritschel, D. G., The critical merger distance between two co-rotating quasi-geostrophic vortices, Journal of Fluid Mechanics, 522, 357-381 (2005) · Zbl 1065.76093 · doi:10.1017/s0022112004002022
[40] Miyazaki, T.; Yamamoto, M.; Fujishima, S., Counter-rotating quasigeostrophic ellipsoidal vortex pair, Journal of the Physical Society of Japan, 72, 8, 1948-1962 (2003) · Zbl 1112.86302 · doi:10.1143/JPSJ.72.1948
[41] Koshel, K. V.; Ryzhov, E. A.; Zhmur, V. V., Diffusion-affected passive scalar transport in an ellipsoidal vortex in a shear flow, Nonlinear Processes in Geophysics, 20, 4, 437-444 (2013) · doi:10.5194/npg-20-437-2013
[42] Tsang, Y.-K.; Dritschel, D. G., Ellipsoidal vortices in rotating stratified fluids: beyond the quasi-geostrophic approximation, Journal of Fluid Mechanics, 762, 196-231 (2015) · doi:10.1017/jfm.2014.630
[43] McKiver, W. J.; Dritschel, D. G., Balanced solutions for an ellipsoidal vortex in a rotating stratified flow · Zbl 1456.76137
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.