×

Hyperspectral super-resolution accounting for spectral variability: coupled tensor LL1-based recovery and blind unmixing of the unknown super-resolution image. (English) Zbl 1524.68425

Summary: In this paper, we propose to jointly solve the hyperspectral super-resolution problem and the unmixing problem of the underlying super-resolution image using a coupled LL1 block-tensor decomposition. We consider a spectral variability phenomenon occurring between the observed low-resolution images. Exact recovery conditions for the image and mixing factors are provided. We propose two algorithms, an unconstrained one and another one subject to nonnegativity constraints, to solve the problems at hand. We showcase performance of the proposed approach on synthetic and real images.

MSC:

68U10 Computing methodologies for image processing

Software:

Tensorlab
Full Text: DOI

References:

[1] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, MTF-tailored multiscale fusion of high-resolution MS and Pan imagery, Photogramm. Eng. Remote Sensing, 72 (2006), pp. 591-596.
[2] J. M. Bioucas-Dias and J. P. Nascimento, Hyperspectral subspace identification, IEEE Trans. Geosci. Remote Sens., 46 (2008), pp. 2435-2445.
[3] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot, Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 5 (2012), pp. 354-379.
[4] R. A. Borsoi, T. Imbiriba, and J. M. Bermudez, Super-resolution for hyperspectral and multispectral image fusion accounting for seasonal spectral variability, IEEE Trans. Image Process., 29 (2020), pp. 116-127.
[5] R. A. Borsoi, T. Imbiriba, J. M. Bermudez, C. Richard, J. Chanussot, L. Drumetz, J.-Y. Tourneret, A. Zare, and C. Jutten, Spectral Variability in Hyperspectral Data Unmixing: A Comprehensive Review, preprint, https://arxiv.org/abs/2001.07307, 2020.
[6] R. A. Borsoi, C. Prévost, K. Usevich, D. Brie, J. M. Bermudez, and C. Richard, Coupled tensor decomposition for hyperspectral and multispectral image fusion with inter-image variability, IEEE J. Sel. Top. Signal Process., 15 (2021), pp. 702-717.
[7] M. Bousse, O. Debals, and L. De Lathauwer, A tensor-based method for large-scale blind source separation using segmentation, IEEE Trans. Signal Process., 65 (2016), pp. 346-358. · Zbl 1414.94086
[8] G. Boutry, M. Elad, G. H. Golub, and P. Milanfar, The generalized eigenvalue problem for nonsquare pencils using a minimal perturbation approach, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 582-601, https://doi.org/10.1137/S0895479803428795. · Zbl 1100.65035
[9] S. Boyd, N. Parikh, and E. Chu, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Now Publishers, Norwell, MA, 2011. · Zbl 1229.90122
[10] P. Comon, Tensors: A brief introduction, IEEE Signal Process. Mag., 31 (2014), pp. 44-53.
[11] L. De Lathauwer, Decompositions of a higher-order tensor in block terms-Part I: Lemmas for partitioned matrices, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1022-1032, https://doi.org/10.1137/060661685. · Zbl 1177.15031
[12] L. De Lathauwer, Decompositions of a higher-order tensor in block terms-Part II: Definitions and uniqueness, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1033-1066, https://doi.org/10.1137/070690729. · Zbl 1177.15032
[13] M. Ding, X. Fu, T.-Z. Huang, J. Wang, and X.-L. Zhao, Hyperspectral Super-resolution via Interpretable Block-Term Tensor Modeling, preprint, https://arxiv.org/abs/2006.10248, 2020.
[14] D. Donoho and V. Stodden, When does non-negative matrix factorization give a correct decomposition into parts?, in Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, 2004, pp. 1141-1148.
[15] A. Eckardt, J. Horack, F. Lehmann, D. Krutz, J. Drescher, M. Whorton, and M. Soutullo, DESIS (DLR earth sensing imaging spectrometer for the ISS-muses platform), in 2015 IEEE IGARSS, 2015, pp. 1457-1459.
[16] M. Elad, P. Milanfar, and G. H. Golub, Shape from moments-an estimation theory perspective, IEEE Trans. Signal Process., 52 (2004), pp. 1814-1829. · Zbl 1369.62145
[17] I. V. Emelyanova, T. R. McVicar, T. G. Van Niel, L. T. Li, and A. M. Van Dijk, Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection, Remote Sens. Environ., 133 (2013), pp. 193-209.
[18] X. Fu, K. Huang, and N. D. Sidiropoulos, On identifiability of nonnegative matrix factorization, IEEE Signal Process. Lett., 25 (2018), pp. 328-332.
[19] X. Fu, W.-K. Ma, T.-H. Chan, and J. M. Bioucas-Dias, Self-dictionary sparse regression for hyperspectral unmixing: Greedy pursuit and pure pixel search are related, IEEE J. Sel. Top. Signal Process., 9 (2015), pp. 1128-1141.
[20] X. Fu, W.-K. Ma, K. Huang, and N. D. Sidiropoulos, Blind separation of quasi-stationary sources: Exploiting convex geometry in covariance domain, IEEE Trans. Signal Process., 63 (2015), pp. 2306-2320. · Zbl 1394.94194
[21] N. Gillis and F. Glineur, Accelerated multiplicative updates and hierarchical als algorithms for nonnegative matrix factorization, Neural Comput., 24 (2012), pp. 1085-1105.
[22] T. Hilker, M. A. Wulder, N. C. Coops, J. Linke, G. McDermid, J. G. Masek, F. Gao, and J. C. White, A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on landsat and MODIS, Remote Sens. Environ., 113 (2009), pp. 1613-1627.
[23] K. Huang, N. D. Sidiropoulos, and A. P. Liavas, A flexible and efficient algorithmic framework for constrained matrix and tensor factorization, IEEE Trans. Signal Process., 64 (2016), pp. 5052-5065. · Zbl 1414.94253
[24] K. Huang, N. D. Sidiropoulos, and A. Swami, Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition, IEEE Trans. Signal Process., 62 (2013), pp. 211-224. · Zbl 1393.15016
[25] T. Imbiriba, R. A. Borsoi, and J. M. Bermudez, Generalized linear mixing model accounting for endmember variability, in 2018 IEEE ICASSP, 2018, pp. 1862-1866.
[26] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, Sparse unmixing of hyperspectral data, IEEE Trans. Geosci. Remote Sens., 49 (2011), pp. 2014-2039.
[27] C. I. Kanatsoulis, X. Fu, N. D. Sidiropoulos, and W.-K. Ma, Hyperspectral super-resolution: A coupled tensor factorization approach, IEEE Trans. Signal Process., 66 (2018), pp. 6503-6517. · Zbl 1415.94026
[28] C. I. Kanatsoulis, X. Fu, N. D. Sidiropoulos, and W.-K. Ma, Hyperspectral super-resolution: Combining low rank tensor and matrix structure, in 2018 IEEE ICIP, 2018, pp. 3318-3322, https://doi.org/10.1109/ICIP.2018.8451733.
[29] H. Kaufmann, K. Segl, S. Chabrillat, S. Hofer, T. Stuffler, A. Mueller, R. Richter, G. Schreier, R. Haydn, and H. Bach, EnMAP a hyperspectral sensor for environmental mapping and analysis, in 2006 IEEE IGARSS, 2006, pp. 1617-1619.
[30] N. Keshava and J. F. Mustard, Spectral unmixing, IEEE Signal Process. Mag., 19 (2002), pp. 44-57.
[31] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), pp. 455-500, https://doi.org/10.1137/07070111X. · Zbl 1173.65029
[32] H. Laurberg, M. G. Christensen, M. D. Plumbley, L. K. Hansen, and S. H. Jensen, Theorems on positive data: On the uniqueness of NMF, Comput. Intell. Neurosci., (2008), https://doi.org/10.1155/2008/764206.
[33] Q. Li, W.-K. Ma, and Q. Wu, Hyperspectral super-resolution: Exact recovery in polynomial time, in 2018 IEEE SSP, 2018, pp. 378-382.
[34] H. Liu, R. Wu, and W.-K. Ma, Is there any recovery guarantee with coupled structured matrix factorization for hyperspectral super-resolution?, in 2019 IEEE CAMSAP, 2019, pp. 480-484.
[35] J. Nascimento and J. Dias, Vertex component analysis: A fast algorithm to unmix hyperspectral data, IEEE Geosci. Remote Sens. Lett., 43 (2005), pp. 898-910.
[36] L. Nus, Méthodes rapides de traitement d’images hyperspectrales. Application à la caractérisation en temps réel du matériau bois , Ph.D. thesis, University of Lorraine, France, 2019.
[37] M. Parente and A. Plaza, Survey of geometric and statistical unmixing algorithms for hyperspectral images, in 2nd IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2010, pp. 1-4.
[38] C. Prévost, K. Usevich, P. Comon, and D. Brie, Hyperspectral super-resolution with coupled Tucker approximation: Identifiability and SVD-based algorithms, IEEE Trans. Signal Process., 68 (2020), pp. 931-946. · Zbl 07590800
[39] Y. Qian, F. Xiong, S. Zeng, J. Zhou, and Y. Tang, Matrix-vector nonnegative tensor factorization for blind unmixing of hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., 55 (2016), pp. 1776-1792.
[40] R. E. Roger and J. F. Arnold, Reliably estimating the noise in AVIRIS hyperspectral images, Int. J. Remote Sens., 17 (1996), pp. 1951-1962.
[41] G. A. Shaw and H. K. Burke, Spectral imaging for remote sensing, Linc. Lab. J., 14 (2003), pp. 3-28.
[42] M. Simoes, J. M. Bioucas-Dias, L. B. Almeida, and J. Chanussot, A convex formulation for hyperspectral image superresolution via subspace-based regularization, IEEE Trans. Geosci. Remote Sens., 53 (2015), pp. 3373-3388.
[43] V. Simoncini, Computational methods for linear matrix equations, SIAM Rev., 58 (2016), pp. 377-441, https://doi.org/10.1137/130912839. · Zbl 1386.65124
[44] B. Somers, G. P. Asner, L. Tits, and P. Coppin, Endmember variability in spectral mixture analysis: A review, Remote Sens. Environ., 115 (2011), pp. 1603-1616.
[45] M. Sørensen and L. De Lathauwer, Fiber sampling approach to canonical polyadic decomposition and application to tensor completion, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 888-917, https://doi.org/10.1137/17M1140790. · Zbl 1458.15045
[46] N. Vervliet, O. Debals, L. Sorber, M. V. Barel, and L. D. Lathauwer, Tensorlab 3.0, https://www.tensorlab.net/, 2016.
[47] L. Wald, T. Ranchin, and M. Mangolini, Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images, Photogramm. Eng. Remote Sensing, 63 (1997), pp. 691-699.
[48] Q. Wei, J. M. Bioucas-Dias, N. Dobigeon, and J.-Y. Tourneret, Multiband image fusion based on spectral unmixing, IEEE Trans. Geosci. Remote Sens., 54 (2016), pp. 7236-7249.
[49] Q. Wei, N. Dobigeon, and J.-Y. Tourneret, Fast fusion of multi-band images based on solving a Sylvester equation, IEEE Trans. Image Process., 24 (2015), pp. 4109-4121. · Zbl 1408.94706
[50] N. Yokoya, C. Grohnfeldt, and J. Chanussot, Hyperspectral and multispectral data fusion: A comparative review of the recent literature, IEEE Trans. Geosci. Remote Sens., 5 (2017), pp. 29-56.
[51] N. Yokoya, T. Yairi, and A. Iwasaki, Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion, IEEE Trans. Geosci. Remote Sens., 50 (2012), pp. 528-537, https://doi.org/10.1109/TGRS.2011.2161320.
[52] A. Zare and K. C. Ho, Endmember variability in hyperspectral analysis: Addressing spectral variability during spectral unmixing, IEEE Signal Process. Mag., 31 (2013), pp. 95-104.
[53] G. Zhang, X. Fu, K. Huang, and J. Wang, Hyperspectral super-resolution: A coupled nonnegative block-term tensor decomposition approach, in 2019 IEEE CAMSAP, Guadeloupe, West Indies, 2019.
[54] G. Zhang, X. Fu, J. Wang, X.-L. Zhao, and M. Hong, Spectrum cartography via coupled block-term tensor decomposition, IEEE Trans. Signal Process., 68 (2020), pp. 3660-3675. · Zbl 07590991
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.