×

The absolute continuity of convolutions of orbital measures in symmetric spaces. (English) Zbl 1362.43007

Let \(G/K\) be the Riemannian symmetric space, where \(G\) is a non-compact connected Lie group and \(K\) is a compact connected subgroup fixed by a Cartan involution on \(G\). The orbital measures are the measures on \(G\) of the form \(\nu_z= m_K* \delta_z *m_K\), where \(m_K\) is the Haar measure on \(K\), \(z\in G\). These are uniform measures supported on the double cosets \(KzK\) in \(G\). They are purely singular, probability measures. The authors characterize the absolute continuity of convolution products of orbital measures on the classical, irreducible Riemannian symmetric spaces of Cartan type III. The characterization can be expressed in terms of dimensions of eigenspaces or combinatorial properties of the annihilating roots of the elements \(z\).

MSC:

43A85 Harmonic analysis on homogeneous spaces
22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.)
43A05 Measures on groups and semigroups, etc.
53C35 Differential geometry of symmetric spaces
43A10 Measure algebras on groups, semigroups, etc.

References:

[1] Anchouche, B.; Gupta, S. K., Convolution of orbital measures in symmetric spaces, Bull. Aust. Math. Soc., 83, 470-485 (2011) · Zbl 1221.43009
[2] Bloom, W.; Heyer, H., Harmonic Analysis of Probability Measures on Hypergroups, De Gruyter Studies in Math., vol. 20 (1994), Berlin
[3] Bump, D., Lie Groups, Graduate Texts in Mathematics, vol. 225 (2004), Springer: Springer New York · Zbl 1053.22001
[4] Caselle, M.; Magnea, U., Random matrix theory and symmetric spaces, Phys. Rep., 394, 41-156 (2004)
[5] Dooley, A.; Repka, J.; Wildberger, N., Sums of adjoint orbits, Linear Multilinear Algebra, 36, 79-101 (1993) · Zbl 0797.15010
[6] Dunkl, C., Operators and harmonic analysis on the sphere, Trans. Amer. Math. Soc., 125, 250-263 (1966) · Zbl 0161.33901
[7] Frumkin, A.; Goldberger, A., On the distribution of the spectrum of the sum of two Hermitian or real symmetric matrices, Adv. in Appl. Math., 37, 268-286 (2006) · Zbl 1115.22010
[8] Graczyk, P.; Sawyer, P., The product formula for the spherical functions on symmetric spaces of noncompact type, J. Lie Theory, 13, 247-261 (2003) · Zbl 1023.43005
[9] Graczyk, P.; Sawyer, P., On the kernel of the product formula on symmetric spaces, J. Geom. Anal., 14, 653-672 (2004) · Zbl 1065.43014
[10] Graczyk, P.; Sawyer, P., Absolute continuity of convolutions of orbital measures on Riemannian symmetric spaces, J. Funct. Anal., 259, 1759-1770 (2010) · Zbl 1198.53053
[11] Graczyk, P.; Sawyer, P., A sharp criterion for the existence of the density in the product formula on symmetric spaces of Type \(A_n\), J. Lie Theory, 20, 751-766 (2010) · Zbl 1207.43007
[12] Graczyk, P.; Sawyer, P., On the product formula on non-compact Grassmannians, Colloq. Math., 133, 145-167 (2013) · Zbl 1286.43012
[13] Graczyk, P.; Sawyer, P., Convolution of orbital measures on symmetric spaces of type \(C_p\) and \(D_p\), J. Aust. Math. Soc., 98, 232-256 (2015) · Zbl 1314.43006
[14] Graczyk, P.; Sawyer, P., Convolution of orbital measures on symmetric spaces: a survey, (Probability on Algebraic and Geometric Structures. Probability on Algebraic and Geometric Structures, Cont. Math., vol. 668 (2016)), 81-110 · Zbl 1425.43005
[15] Gupta, S. K.; Hare, K. E., Convolutions of generic orbital measures in compact symmetric spaces, Bull. Aust. Math. Soc., 79, 513-522 (2009) · Zbl 1170.43004
[16] Gupta, S. K.; Hare, K. E., \(L^2\)-singular dichotomy for orbital measures of classical compact Lie groups, Adv. Math., 222, 1521-1573 (2009) · Zbl 1179.43006
[17] Gupta, S. K.; Hare, K. E., The smoothness of convolutions of zonal measures on compact symmetric spaces, J. Math. Anal. Appl., 402, 668-678 (2013) · Zbl 1267.43005
[18] Gupta, S. K.; Hare, K. E., Characterizing the absolute continuity of the convolution of orbital measures in a classical Lie algebra, Canad. J. Math., 68, 841-874 (2016) · Zbl 1361.43005
[19] Gupta, S. K.; Hare, K. E.; Seyfaddini, S., \(L^2\)-singular dichotomy for orbital measures of classical simple Lie algebras, Math. Z., 262, 91-124 (2009) · Zbl 1168.43003
[20] Hare, K. E.; Johnstone, D. L.; Shi, F.; Yeung, W.-K., The \(L^2\)-singular dichotomy for exceptional Lie groups and algebras, J. Aust. Math. Soc., 95, 362-382 (2013) · Zbl 1292.43010
[21] Hare, K. E.; He, Jimmy, The absolute continuity of convolution products of orbital measures in exceptional symmetric spaces, Monatsh. Math. (2017), in press · Zbl 1366.43005
[22] Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces (1978), Academic Press: Academic Press New York · Zbl 0451.53038
[23] Humphreys, J., Introduction to Lie Algebras and Representation Theory (1972), Springer Verlag: Springer Verlag New York · Zbl 0254.17004
[24] Jaworski, W.; Raja, C., The Choquet-Deny theorem and distal properties of totally disconnected locally compact groups of polynomial growth, New York J. Math., 13, 159-174 (2007) · Zbl 1118.60008
[25] Kane, R., Reflection Groups and Invariant Theory, Canadian Math. Soc. (2001), Springer: Springer N.Y. · Zbl 0986.20038
[26] Knapp, A., Lie Groups Beyond an Introduction (2002), Birkhauser Verlag AG · Zbl 1075.22501
[27] Knutson, A.; Tao, T., Honeycombs and sums of Hermitian matrices, Notices Amer. Math. Soc., 48, 175-186 (2001) · Zbl 1047.15006
[28] Lin, M.; Wittmann, R., Convolution powers of spread out probabilities, Ann. Inst. Henri Poincaré Probab. Stat., 32, 661-667 (1996) · Zbl 0890.60008
[29] Ragozin, D., Zonal measure algebras on isotropy irreducible homogeneous spaces, J. Funct. Anal., 17, 355-376 (1974) · Zbl 0297.43002
[30] Ragozin, D., Central measures on compact simple Lie groups, J. Funct. Anal., 10, 212-229 (1972) · Zbl 0286.43002
[31] Ricci, F.; Stein, E., Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds, J. Funct. Anal., 78, 56-84 (1988) · Zbl 0645.42019
[32] Ricci, F.; Stein, E., Harmonic analysis on nilpotent groups and singular integrals. III. Fractional integration along manifolds, J. Funct. Anal., 86, 360-389 (1989) · Zbl 0684.22006
[33] Wright, A., Sums of adjoint orbits and \(L^2\)-singular dichotomy for \(S U(m)\), Adv. Math., 227, 253-266 (2011) · Zbl 1223.22007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.