×

The effects of regularity on the geometrical properties of Voronoi tessellations. (English) Zbl 1395.74073

Summary: This study comprehensively quantifies the effects of regularity on the geometrical properties of a random three-dimensional Voronoi tessellation (VT), where regularity was defined as the ratio of the minimum seed distance to the seed distance of the correlated body-centred cubic lattice. A scheme to generate Voronoi tessellations with controlled regularity is proposed, which was used to simulate \(10^{6}\) cells for a series of regularities. The results were used to derive probability distributions for the properties of the tessellation, including faces and edges per cell, vertex and dihedral cell angles, cell areas and volumes, etc. An understanding of the relation between a simple, measurable parameter characterizing the degree of regularity of a Voronoi tessellation and its geometrical properties is essential in generating virtual microstructures that are statistically representative of reality; the statistical results are also relevant to all other applications involving random Voronoi tessellations. Finally, an application is presented of the proposed Voronoi tessellation generation scheme applied to micromechanical modelling of grain structures with defined regularities for crystal plasticity finite element analysis.

MSC:

74M25 Micromechanics of solids
60D05 Geometric probability and stochastic geometry
Full Text: DOI

References:

[1] Voronoi, G. F., Recherches sur LES paralléloèdres primitifs, J. Reine Angew. Math., 134, 198-287, (1908) · JFM 39.0274.01
[2] Stoyan, D.; Kendall, W. S.; Mecke, J., Stochastic geometry and its application, (1989), John Wiley and Sons New York
[3] Okabe, A.; Boots, B.; Sugihara, K.; Chiu, S. N., Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, Vol. 501, (2009), Wiley
[4] Meijering, J. L., Interface area, edge length, and number of vertices in crystal aggregates with random nucleation, Philips Res. Rep., 8, 270-290, (1953) · Zbl 0053.33401
[5] Zhu, H. X.; Hobdell, J. R.; Windle, A. H., The effects of cell irregularity on the elastic properties of open cell foams, Acta Mater., 48, 4893-4900, (2000)
[6] Zhu, H. X.; Windle, A. H., The effects of cell irregularity on the high strain compression of open cell foams, Acta Mater., 50, 1041-1052, (2002)
[7] Finney, J. L., Volume occupation, environment and accessibility in proteins. the problem of the protein surface, J. Mol. Biol., 96, 4, 721-732, (1975)
[8] Getis, A.; Boots, B. N., Models of Spatial Processes: An Approach to the Study of Point, Line, and Area Patterns, Vol. 198, (1978), Cambridge University Press Cambridge · Zbl 0374.60069
[9] Icke, V., Particles, space, and time, Astrophys. Space Sci., 244, 1, 293-311, (1996)
[10] Arsie, A.; Frazzoli, E., Efficient routing of multiple vehicles with no explicit communications, Int. J. Robust Nonlinear Control, 18, 2, 154-164, (2008) · Zbl 1282.93015
[11] Cortes, J.; Martinez, S.; Karatas, T.; Bullo, F., Coverage control for mobile sensing networks, IEEE Trans. Robot. Autom., 20, 2, 243-255, (2004)
[12] K.C. Ho, N. Zhang, J. Lin, T.A. Dean, An integrated approach for virtual microstructure generation and micromechanics modelling for micro-forming simulation, in: Proceedings of ASME MNC2007, 2007.
[13] Zhang, P.; Karimpour, M.; Balint, D.; Lin, J., Cohesive zone representation and junction partitioning for crystal plasticity analyses, Int. J. Numer. Methods Eng., 92, 715-733, (2012) · Zbl 1352.74310
[14] Den Toonder, J.; Van Dommelen, J.; Baaijens, F., The relation between single crystal elasticity and the effective elastic behaviour of polycrystalline materials: theory, measurement and computation, Model. Simul. Mater. Sci. Eng., 7, 909-928, (1999)
[15] Ivasishin, O. M.; Shevchenko, S. V.; Semiatin, S. L., Implementation of exact grain-boundary geometry into a 3-D Monte-Carlo (Potts) model for microstructure evolution, Acta Mater., 57, 2834-2844, (2009)
[16] Brahme, A.; Alvi, M. H.; Saylor, D.; Fridy, J.; Rollett, A. D., 3D reconstruction of microstructure in a commercial purity aluminum, Scr. Mater., 55, 75-80, (2006)
[17] Madej, L.; Sieradzki, L.; Sitko, M.; Perzynski, K.; Radwanski, K.; Kuziak, R., Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure, Comput. Mater. Sci., 77, 172-181, (2013)
[18] Chen, L., A novel computer simulation technique for modeling grain growth, Scr. Metall. Mater., 32, 115-120, (1995)
[19] Logé, R.; Bernacki, M.; Resk, H.; Delannay, L.; Digonnet, H.; Chastel, Y.; Coupez, T., Linking plastic deformation to recrystallization in metals using digital microstructures, Phil. Mag., 88, 3691-3712, (2008)
[20] Sieradzki, L.; Madej, L., A perceptive comparison of the cellular automata and Monte Carlo techniques in application to static recrystallization modeling in polycrystalline materials, Comput. Mater. Sci., 67, 156-173, (2013)
[21] Gilbert, E. N., Random subdivisions of space into crystals, Ann. Math. Statist., 33, 3, 958-972, (1962) · Zbl 0242.60009
[22] Mason, J. K.; Ehrenborg, R.; Lazar, E. A., A geometric formulation of the law of aboav-weaire in two and three dimensions, J. Phys. A, 45, 6, 065001, (2012) · Zbl 1323.82049
[23] Mahin, K. W.; Hanson, K.; Morris, J. W., Comparative analysis of the cellular and Johnson-mehl microstructures through computer simulation, Acta Metall., 28, 4, 443-453, (1980)
[24] Andrade, P. N.; Fortes, M. A., Distribution of cell volumes in a Voronoi partition, Phil. Mag. B, 58, 671-674, (1988)
[25] Kumar, S.; Kurtz, S. K.; Banavar, J. R.; Sharma, M. G., Properties of a three-dimensional Poisson-Voronoi tesselation: A Monte Carlo study, J. Statist. Phys., 67, 3, 523-551, (1992) · Zbl 0925.82126
[26] Kumar, S.; Kurtz, S. K., Monte-Carlo study of angular and edge length distributions in a three-dimensional Poisson-Voronoi tesselation, Mater. Character., 34, 1, 15-27, (1995)
[27] Ferenc, J.; Néda, Z., On the size distribution of Poisson Voronoi cells, Physica A, 385, 2, 518-526, (2007)
[28] Hanson, H. G., Voronoi cell properties from simulated and real random spheres and points, J. Statist. Phys., 30, 3, 591-605, (1983)
[29] Oger, L.; Gervois, A.; Troadec, J. P.; Rivier, N., Voronoi tessellation of packings of spheres: topological correlation and statistics, Phil. Mag. B, 74, 2, 177-197, (1996)
[30] Lucarini, V., Three-dimensional random Voronoi tessellations: from cubic crystal lattices to Poisson point processes, J. Statist. Phys., 134, 1, 185-206, (2009) · Zbl 1160.82353
[31] Kumar, V. S.; Kumaran, V., Voronoi cell volume distribution and configurational entropy of hard-spheres, J. Chem. Phys., 123, 114501, (2005)
[32] Zhu, H.; Thorpe, S.; Windle, A., The geometrical properties of irregular two-dimensional Voronoi tessellations, Phil. Mag. A, 81, 2, 2765-2783, (2001)
[33] Finney, J. L., Random packings and the structure of simple liquids. I. the geometry of random close packing, Proc. R. Soc. Lond. A, 319, 1539, 479-493, (1970)
[34] Thomson, W., On the division of space with minimum partitional area, Acta Math., 11, 1, 121-134, (1887) · JFM 20.0523.01
[35] Dementev, A. G.; Tarakanov, O. G., Effect of cellular structure on the mechanical properties of plastic foams, Mech. Compos. Mater., 6, 4, 519-525, (1970)
[36] Dementev, A. G.; Tarakanov, O. G., Model analysis of the cellular structure of plastic foams of the polyurethane type, Mech. Compos. Mater., 6, 5, 744-749, (1970)
[37] Zhu, H. X.; Knott, J. F.; Mills, N. J., Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells, J. Mech. Phys. Solids, 45, 3, 319-343, (1997)
[38] Zhu, H. X.; Mills, N. J.; Knott, J. F., Analysis of the high strain compression of open-cell foams, J. Mech. Phys. Solids, 45, 11, 1875-1904, (1997) · Zbl 0969.74520
[39] Warren, W. E.; Kraynik, A. M., Linear elastic behavior of a low-density Kelvin foam with open cells, J. Appl. Mech., 64, 4, 787-794, (1997) · Zbl 0920.73318
[40] Zhang, P.; Balint, D.; Lin, J., An integrated scheme for crystal plasticity analysis: virtual grain structure generation, Comput. Mater. Sci., 50, 10, 2854-2864, (2011)
[41] Zhang, P.; Balint, D.; Lin, J., Controlled Poisson Voronoi tessellation for virtual grain structure generation: a statistical evaluation, Phil. Mag., 91, 4555-4573, (2011)
[42] Aboav, D. A., The arrangement of grains in a polycrystal, Metallography, 3, 4, 383-390, (1970)
[43] Weaire, D., Some remarks on the arrangement of grains in a polycrystal, Metallography, 7, 2, 157-160, (1974)
[44] Fortes, M. A., Topological properties of cellular structures based on the staggered packing of prisms, J. Physique, 50, 7, 725-731, (1989)
[45] Fortes, M. A., Applicability of the Lewis and aboav-weaire laws to 2d and 3d cellular structures based on Poisson partitions, J. Phys. A: Math. Gen., 28, 4, 1055, (1999)
[46] Fortes, M. A., Applicability of aboav’s rule to a three-dimensional Voronoi partition, Phil. Mag. Lett., 68, 2, 69-71, (1993)
[47] Smith, C. S., A search for structure, (1981), MIT Press
[48] Desch, C. H., The solidification of metals from the liquid state, J. Inst. Met., 22, 2, 241-276, (1919)
[49] Lewis, F. T., The correlation between cell division and the shapes and sizes of prismatic cells in the epidermis of cucumis, Anatom. Record, 38, 3, 341-376, (1928)
[50] Chiu, S. N., Aboav-weaire’s and lewis’ laws-a review, Mater. Character., 34, 2, 149-165, (1995)
[51] Kiang, T., Random fragmentation in two and three dimensions, Z. Astrophys., 64, 433-439, (1966)
[52] Zhang, P.; Karimpour, M.; Balint, D.; Lin, J., Three-dimensional virtual grain structure generation with grain size control, Comput. Mater. Sci., 55, 89-101, (2012)
[53] Zhang, P.; Karimpour, M.; Balint, D.; Lin, J., Three-dimensional virtual grain structure generation with grain size control, Mech. Mater., 55, 89-101, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.