×

Efficient hypersingular line and surface integrals direct evaluation by complex variable differentiation method. (English) Zbl 1426.65034

Summary: We present an efficient numerical scheme to evaluate hypersingular integrals appeared in boundary element methods. The hypersingular integrals are first separated into regular and singular parts, in which the singular integrals are defined as limits around the singularity and their values are determined analytically by taking the finite part values. The remaining regular integrals can be evaluated using rational interpolatory quadrature or complex variable differentiation (CVDM) for the regular function when machine precision like accuracy is required. The proposed method is then generalised for evaluating hypersingular surface integrals, in which the inner integral is treated as the hypersingular line integral via coordinate transformations. The procedure is implemented into 8-node rectangular boundary element and 6-node triangular element for numerical evaluation. Finally, several numerical examples are presented to demonstrate the efficiency of the present method. To the best of our knowledge, the proposed method is more accurate, faster and more generalised than other methods available in the literature to evaluate hypersingular integrals.

MSC:

65D30 Numerical integration
26B15 Integration of real functions of several variables: length, area, volume
65N38 Boundary element methods for boundary value problems involving PDEs

Software:

BEAN
Full Text: DOI

References:

[1] Lee, C. Y.; Wang, H.; Qin, Q. H., Method of fundamental solutions for 3D elasticity with body forces by coupling compactly supported radial basis functions, Eng. Anal. Bound. Elem., 60, 123-136 (2015) · Zbl 1403.74306
[2] Fairweather, G.; Karageorghis, A., The method of fundamental solutions for elliptic boundary value problems, Adv. Comput. Math., 9, 69-95 (1998) · Zbl 0922.65074
[3] Wang, H.; Qin, Q. H.; Kang, Y., A meshless model for transient heat conduction in functionally graded materials, Comput. Mech., 38, 51-60 (2006) · Zbl 1097.80001
[4] Qin, Q. H., Nonlinear analysis of Reissner plates on an elastic foundation by the BEM, Int. J. Sol. Struct., 30, 3101-3111 (1993) · Zbl 0790.73073
[5] Lee, C. Y.; Wang, H.; Qin, Q. H., Dual reciprocity boundary element method using compactly supported radial basis functions for 3D linear elasticity with body forces, Int. J. Mech. Mater. Des., 12, 463-476 (2016)
[6] Qin, Q. H.; Mai, Y. W., BEM for crack-hole problems in thermopiezoelectric materials, Eng. Fract. Mech., 69, 577-588 (2002)
[7] Wang, H.; Qin, Q. H.; Xiao, Y., Special n-sided Voronoi fiber/matrix elements for clustering thermal effect in natural-hemp-fiber-filled cement composites, Int. J. Heat Mass Transf., 92, 228-235 (2016)
[8] Qin, Q. H., Hybrid Trefftz finite-element approach for plate bending on an elastic foundation, Appl. Math. Model., 18, 334-339 (1994) · Zbl 0804.73070
[9] Qin, Q. H., Variational formulations for TFEM of piezoelectricity, Int. J. Sol. Struct., 40, 6335-6346 (2003) · Zbl 1057.74043
[10] Contopanagos, H.; Dembart, B.; Epton, M.; Ottusch, J. J.; Rokhlin, V.; Visher, J. L.; Wandzura, S. M., Well-conditioned boundary integral equations for three-dimensional electromagnetic scattering, IEEE Trans. Antennas Propag., 50, 1824-1830 (2002)
[11] Chien, C.; Rajiyah, H.; Atluri, S., An effective method for solving the hyper‐singular integral equations in 3‐D acoustics, J. Acoust. Soc. Am., 88, 918-937 (1990)
[12] Liu, Y.; Rizzo, F., A weakly singular form of the hypersingular boundary integral equation applied to 3-D acoustic wave problems, Comput. Method Appl. Mech. Eng., 96, 271-287 (1992) · Zbl 0754.76072
[13] Frankel, J. I., Regularization of inverse heat conduction by combination of rate sensor analysis and analytic continuation, J. Eng. Math., 57, 181-198 (2007) · Zbl 1122.80010
[14] Qin, Q. H., General solutions for thermopiezoelectrics with various holes under thermal loading, Int. J. Sol. Struct., 37, 5561-5578 (2000) · Zbl 0999.74052
[15] Qin, Q. H., Green’s Function and Boundary Elements of Multifield Materials (2007), Elsevier: Elsevier Oxford
[16] Qin, Q. H.; Mai, Y. W., Crack growth prediction of an inclined crack in a half-plane thermopiezoelectric solid, Theor. Appl. Fract. Mech., 26, 185-191 (1997)
[17] Guiggiani, M., Hypersingular formulation for boundary stress evaluation, Eng. Anal. Bound. Elem., 13, 169-179 (1994)
[18] Gray, L. J.; Glaeser, J.; Kaplan, T., Direct evaluation of hypersingular Galerkin surface integrals, SIAM J. Sci. Comput., 25, 1534-1556 (2004) · Zbl 1061.65129
[19] Polimeridis, A. G.; Tamayo, J. M.; Rius, J. M.; Mosig, J. R., Fast and accurate computation of hypersingular integrals in Galerkin surface integral equation formulations via the direct evaluation method, IEEE Trans. Antennas Propag., 59, 2329-2340 (2011) · Zbl 1369.78287
[20] Martin, P.; Rizzo, F., Hypersingular integrals: how smooth must the density be?, Int. J. Numer. Method Eng., 39, 687-704 (1996) · Zbl 0846.65070
[21] Monegato, G., Numerical evaluation of hypersingular integrals, J. Comput. Appl. Math.,, 50, 9-31 (1994) · Zbl 0818.65016
[22] Monegato, G., Definitions, properties and applications of finite-part integrals, J. Comput. Appl. Math., 229, 425-439 (2009) · Zbl 1166.65061
[23] Mikhlin, S. G., Multidimensional Singular Integrals and Integral Equations (1965), Pergamon Press: Pergamon Press Oxford · Zbl 0129.07701
[24] Lifanov, I. K.m.; Poltavskii, L. N.; Vainikko, M. M., Hypersingular Integral Equations and Their Applications (2003), CRC Press
[25] Ninham, B., Generalised functions and divergent integrals, Numerische Mathematik, 8, 444-457 (1966) · Zbl 0143.38701
[26] Paget, D., The numerical evaluation of Hadamard finite-part integrals, Numerische Mathematik, 36, 447-453 (1981) · Zbl 0442.65016
[27] Paget, D., A quadrature rule for finite-part integrals, BIT Numer. Math., 21, 212-220 (1981) · Zbl 0457.41027
[28] Kutt, H. R., On the Numerical Evaluation of Finite-Part Integrals Involving an Algebraic Singularity (1975), Stellenbosch University: Stellenbosch University Stellenbosch · Zbl 0327.65026
[29] Monegato, G., On the weights of certain quadratures for the numerical evaluation of Cauchy principal value integrals and their derivatives, Numerische Mathematik, 50, 273-281 (1986) · Zbl 0589.41025
[30] Hui, C. Y.; Shia, D., Evaluations of hypersingular integrals using Gaussian quadrature, Int. J. Numer. Method Eng., 44, 205-214 (1999) · Zbl 0948.65019
[31] Kolm, P.; Rokhlin, V., Numerical quadratures for singular and hypersingular integrals, Comput. Math. Appl., 41, 327-352 (2001) · Zbl 0985.65016
[32] Carley, M., Numerical quadratures for singular and hypersingular integrals in boundary element methods, SIAM J. Sci. Comput.,, 29, 1207-1216 (2007) · Zbl 1141.65393
[33] Brandão, M. P., Improper integrals in theoretical aerodynamics-the problem revisited, AIAA J., 25, 1258-1260 (1987)
[34] Guiggiani, M.; Krishnasamy, G.; Rudolphi, T.; Rizzo, F., A general algorithm for the numerical solution of hypersingular boundary integral equations, J. Appl. Mech., 59, 604-614 (1992) · Zbl 0765.73072
[35] Gao, X. W., An effective method for numerical evaluation of general 2D and 3D high order singular boundary integrals, Comput. Method Appl. Mech. Eng.,, 199, 2856-2864 (2010) · Zbl 1231.65236
[36] Feng, W. Z.; Liu, J.; Gao, X. W., An improved direct method for evaluating hypersingular stress boundary integral equations in BEM, Eng.Anal. Bound. Elem., 61, 274-281 (2015) · Zbl 1403.74166
[37] Floater, M. S.; Hormann, K., Barycentric rational interpolation with no poles and high rates of approximation, Numerische Mathematik, 107, 315-331 (2007) · Zbl 1221.41002
[38] Gao, X. W.; Liu, D. D.; Chen, P. C., Internal stresses in inelastic BEM using complex-variable differentiation, Comput. Mech., 28, 40-46 (2002) · Zbl 1115.74379
[39] Gao, X. W.; He, M. C., A new inverse analysis approach for multi-region heat conduction BEM using complex-variable-differentiation method, Eng. Anal. Bound. Elem., 29, 788-795 (2005) · Zbl 1182.80014
[40] Martins, J. R.; Sturdza, P.; Alonso, J. J., The complex-step derivative approximation, ACM Trans. Math. Softw., 29, 245-262 (2003) · Zbl 1072.65027
[41] Muskhelishvili, N. I.; Radok, J. R.M., Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics (2008), Courier Corporation
[42] Hadamard, J., Lectures On Cauchy’s Problem in Linear Partial Differential Equations (1923), Yale University Press: Yale University Press New Haven · JFM 49.0725.04
[43] Berrut, J. P.; Trefethen, L. N., Barycentric lagrange interpolation, SIAM Rev., 46, 501-517 (2004) · Zbl 1061.65006
[44] Berrut, J. P.; Baltensperger, R.; Mittelmann, H. D., Recent developments in barycentric rational interpolation, Trends and Applications in Constructive Approximation, 27-51 (2005), Springer · Zbl 1077.65009
[45] Berrut, J. P.; Klein, G., Recent advances in linear barycentric rational interpolation, J. Comput. Appl. Math., 259, 95-107 (2014) · Zbl 1291.65036
[46] Berrut, J. P.; Mittelmann, H. D., Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval, Comput. Math. Appl., 33, 77-86 (1997) · Zbl 0893.41009
[47] Schneider, C.; Werner, W., Some new aspects of rational interpolation, Math. Comput., 47, 285-299 (1986) · Zbl 0612.65005
[48] Guiggiani, M., Hypersingular boundary integral equations have an additional free term, Comput. Mech., 16, 245-248 (1995) · Zbl 0840.65117
[49] Guiggiani, M.; Gigante, A., A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method, J. Appl. Mech., 57, 906-915 (1990) · Zbl 0735.73084
[50] Gao, X. W., The radial integration method for evaluation of domain integrals with boundary-only discretization, Eng. Anal. Bound. Elem., 26, 905-916 (2002) · Zbl 1130.74461
[51] Sutradhar, A.; Reeder, J.; Gray, L. J., Symmetric Galerkin Boundary Element Method (2008), Springer Science & Business Media: Springer Science & Business Media Heidelberg, Berlin · Zbl 1156.65101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.