×

Numerical computation of the tau approximation for the Volterra-Hammerstein integral equations. (English) Zbl 1185.65234

The authors are concerned with the numerical solution of Hammerstein type Volterra equations using an extension of the tau method for nonlinear integral equations. Spectral methods can be viewed as a special case of the tau method which is applied here in an operational form based on arbitrary polynomial basis functions. The authors provide a theoretical basis for their work, an algorithmic description of the method and some numerical examples illustrating their results.

MSC:

65R20 Numerical methods for integral equations
45G05 Singular nonlinear integral equations
Full Text: DOI

References:

[1] Brunner, H.: Implicitly linear collocation methods for nonlinear Volterra equations. Appl. Numer. Math. 9, 235–247 (1992) · Zbl 0761.65103 · doi:10.1016/0168-9274(92)90018-9
[2] Ganesh, M., Joshi, M.: Numerical solvability of Hammerstein integral equations of mixed type. IMA J. Numer. Anal. 11, 21–31 (1991) · Zbl 0719.65093 · doi:10.1093/imanum/11.1.21
[3] Atkinson, K.E.: The numerical solution of a nonlinear boundary integral integral equation on smooth surfaces. IMA J. Numer. Anal. 14, 461–483 (1994) · Zbl 0814.65110 · doi:10.1093/imanum/14.4.461
[4] Madbouly, N.M., McGhee, D.F., Roach, G.F.: Adomian’s method for Hammerstein integral equations arising from chemical reactor theory. Appl. Math. Comput. 117, 241–249 (2001) · Zbl 1023.65143 · doi:10.1016/S0096-3003(99)00177-0
[5] Guo Qiang, H.: Asymptotic error expansion of a collocation type method for Volterra-Hammerstein integral equations. Appl. Numer. Math. 13, 357–369 (1993) · Zbl 0799.65150 · doi:10.1016/0168-9274(93)90094-8
[6] Elnagar, G.N., Kazemi, M.: Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations. J. Comput. Appl. Math. 76, 147–158 (1996) · Zbl 0873.65122 · doi:10.1016/S0377-0427(96)00098-2
[7] Razzaghi, M., Ordokhani, Y.: Solution of nonlinear Volterra-Hammerstein integral equations via rationalized Haar functions. Math. Probl. Eng. 7, 205–219 (2001) · Zbl 0990.65152 · doi:10.1155/S1024123X01001612
[8] Shahmorad, S.: Numerical solution of the general form linear Fredholm-Volterra integro-differential equations by the Tau method with an error estimation. Appl. Math. Comput. 167, 1418–1429 (2005) · Zbl 1082.65602 · doi:10.1016/j.amc.2004.08.045
[9] Hossieni, S.M., Shahmorad, S.: Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases. Appl. Math. Model. 27, 145–154 (2003) · Zbl 1047.65114 · doi:10.1016/S0307-904X(02)00099-9
[10] Pour-Mahmoud, J., Rahimi-Ardebili, M.Y., Shahmorad, S.: Numerical solution of Volterra integro-differential equations by the Tau method with the Chebyshev and Legendre bases. Appl. Math. Comput. 170, 314–338 (2005) · Zbl 1080.65127 · doi:10.1016/j.amc.2004.11.039
[11] Hossieni, S.M., Shahmorad, S.: Numerical piecewise approximate solution of Fredholm integro-differential equations by the Tau method. Appl. Math. Model. 29, 1005–1021 (2005) · Zbl 1099.65136 · doi:10.1016/j.apm.2005.02.003
[12] Yalcinbas, S.: Taylor polynomial solution of nonlinear Volterra-Fredholm integral equations. Appl. Math. Comput. 127, 195–206 (2002) · Zbl 1025.45003 · doi:10.1016/S0096-3003(00)00165-X
[13] Ortiz, E.L., Samara, H.: An operational approach to the Tau method for the numerical solution of nonlinear differential equations. Computing 27, 15–25 (1981) · Zbl 0449.65053 · doi:10.1007/BF02243435
[14] Ortiz, E.L., Samara, H.: Numerical solution of differential eigenvalue problems with an operational approach to the Tau method. Computing 31, 95–103 (1983) · Zbl 0508.65045 · doi:10.1007/BF02259906
[15] Ortiz, E.L., Samara, H.: Numerical solution of partial differential equations with variable coefficients with an operational approach to the Tau method. Comput. Math. Appl. 10, 5–13 (1984) · Zbl 0575.65118 · doi:10.1016/0898-1221(84)90081-6
[16] Hadizadeh, M., Azizi, R.: A reliable computational approach for approximate solution of Hammerstein integral equations of mixed type. Int. J. Computer. Math. 81(7), 889–900 (2004) · Zbl 1059.65124 · doi:10.1080/00207160410001714628
[17] El-Daou, M.K., Khajah, H.G.: Iterated solutions of linear operator equations with the Tau method. Math. Comput. 66(217), 207–213 (1997) · Zbl 0855.47006 · doi:10.1090/S0025-5718-97-00803-X
[18] El-Daou, M.K., Ortiz, E.L.: The weighted subspace of the Tau method and orthogonal collocation. J. Math. Anal. Appl. 326, 622–631 (2007) · Zbl 1119.65065 · doi:10.1016/j.jmaa.2006.03.019
[19] Frankel, J.I.: A note on the integral formulation of Kumar and Sloan. J. Comput. Appl. Math. 61, 263–274 (1995) · Zbl 0842.65096 · doi:10.1016/0377-0427(94)00071-3
[20] Finlayson, B.A.: Nonlinear Analysis in Chemical Engineering. McGraw-Hill, New York (1979)
[21] Thieme, H.R.: A model for the spatial spread of an epidemic. J. Math. Biol. 4, 337–351 (1977) · Zbl 0373.92031 · doi:10.1007/BF00275082
[22] El-Daou, M.K., Ortiz, E.L.: The Tau method as an analytic tool in the discussion of equivalence results across numerical methods. Computing 60, 365–376 (1998) · Zbl 0908.65072 · doi:10.1007/BF02684381
[23] Linz, P.: Analytical and Numerical Methods for Volterra Equations. SIAM, Philadelphia (1985) · Zbl 0566.65094
[24] Froes Bunchaft, M.E.: Some extensions of the Lanczos-Ortiz theory of canonical polynomials in the Tau method. Math. Comput. 66(218), 609–621 (1997) · Zbl 0866.65045 · doi:10.1090/S0025-5718-97-00816-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.