×

Projected iterations of fixed-point type to solve nonlinear partial Volterra integro-differential equations. (English) Zbl 1474.45018

Summary: In this paper, we propose a method to approximate the fixed point of an operator in a Banach space. Using biorthogonal systems, this method is applied to build an approximation of the solution of a class of nonlinear partial integro-differential equations. The theoretical findings are illustrated with several numerical examples, confirming the reliability, validity and precision of the proposed method.

MSC:

45D05 Volterra integral equations
45L05 Theoretical approximation of solutions to integral equations
45N05 Abstract integral equations, integral equations in abstract spaces
47H10 Fixed-point theorems
47N20 Applications of operator theory to differential and integral equations
65R20 Numerical methods for integral equations

References:

[1] Al-Khaled, K.; Darweesh, A.; Yousef, MH, Convergence of numerical schemes for the solution of partial integro-differential equations used in heat transfer, J. Appl. Math. Comput., 61, 1-2, 657-675 (2019) · Zbl 1448.65276 · doi:10.1007/s12190-019-01268-9
[2] Appell, J.; Kalitvin, AS; Nashed, MZ, On some partial integral equations arising in the mechanics of solids, ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 79, 10, 703-713 (1999) · Zbl 0945.76527 · doi:10.1002/(SICI)1521-4001(199910)79:10<703::AID-ZAMM703>3.0.CO;2-W
[3] Avazzadeh, Z.; Heydari, M.; Chen, W.; Loghamani, GB, Smooth solution of partial integro-differential equations using radial basis functions, J. Appl. Anal. Comput., 4, 2, 115-127 (2014) · Zbl 1297.35260
[4] Berenguer, M.I., Gamez, D., Garralda-Guillem, A.I., Serrano, M.C., Ruiz-Galan, M.: Analytical techniques for a numerical solution of the linear volterra integral equation of the second kind. Abstract and Applied Analysis, Article ID 149367, 2009 (2009) · Zbl 1187.65140
[5] Berenguer, M.I., Gamez, D., Garralda-Guillem, A.I., Serrano, M.C.: Nonlinear volterra integral equation of the second kind and biorthogonal systems. Abstract and Applied Analysis, Article ID 135216, 2010 (2010) · Zbl 1198.65253
[6] Berenguer, M.I., Garralda-Guillem, A.I., Ruiz-Galan, M.: Biorthogonal systems approximating the solution of the nonlinear Volterra integro-differential equation. Fixed Point Theory and Applications, Article ID 470149, 2010 (2010) · Zbl 1198.65079
[7] Berenguer, MI; Gamez, D.; Linares, AJL, Fixed point techniques and Schauder bases to approximate the solution of the first order nonlinear mixed Fredholm-Volterra integro differential equation, J. Comput. Appl. Math., 252, 52-61 (2013) · Zbl 1288.65183 · doi:10.1016/j.cam.2012.09.020
[8] Berenguer, MI; Gamez, D., A computational method for solving a class of two dimensional Volterra integral equations, J. Comput. Appl. Math., 318, 403-410 (2017) · Zbl 1357.65312 · doi:10.1016/j.cam.2016.05.028
[9] Berenguer, MI; Gamez, D., Numerical solving of several types of two-dimensional integral equations and estimation of error bound, Math. Meth. Appl. Sci., 41, 7351-7366 (2018) · Zbl 1405.45001 · doi:10.1002/mma.4840
[10] Brezis, H., Functional Analysis, Spaces and Sobolev Partial Differential Equations (2011), New York: Universitext, Springer, New York · Zbl 1220.46002
[11] Bobodzhanov, AA; Safonov, VF, A generalization of the regularization method to the singularly perturbed integro-differential equations with partial derivaties, Russian Math., 62, 3, 6-17 (2018) · Zbl 1393.45006 · doi:10.3103/S1066369X18030027
[12] Castro, E.; Gámez, D.; Garralda-Guillem, AI; Galán, MR, High order linear initial-value problems and Schauder bases, Appl. Math. Model., 31, 12, 2629-2638 (2007) · Zbl 1137.65046 · doi:10.1016/j.apm.2006.10.013
[13] Dixon, JA, A nonlinear weakly singular Volterra integro-differential equation arising from a reaction-diffusion study in a small cell, J. Comput. Appl. Math., 18, 3, 289-305 (1987) · Zbl 0625.65143 · doi:10.1016/0377-0427(87)90003-3
[14] Frankel, JI; Osborne, GE, A new time treatment for solving partial integro-differential equations of radiative transport, IMA J. Numer. Anal., 19, 91-103 (1999) · Zbl 0946.65144 · doi:10.1093/imanum/19.1.91
[15] Gelbaum, BR; DE Lamadrid, JG, Bases of tensor products of Banach spaces, Pacific. J. Math., 11, 1281-1286 (1961) · Zbl 0106.08604 · doi:10.2140/pjm.1961.11.1281
[16] Gürbüz, B.; Sezer, M., A new computational method based on laguerre polynomials for solving certain nonlinear partial integro differential equations, Acta Phys. Pol., A, 132, 3, 561-563 (2017) · doi:10.12693/APhysPolA.132.561
[17] Hameed, HH; Eshkuvatov, ZK; Long, NMAN, em An approximate solution of two dimensional nonlinear Volterra integral equation using Newton-Kantorovich method, Malays. J. Sci., 35, 1, 37-43 (2016) · doi:10.22452/mjs.vol35no1.6
[18] Jameson, GJO, Topology and Normed Spaces (1974), London: Chapman-Hall, London · Zbl 0285.46002
[19] Ghoochani-Shirvan, R.; Saberi-Nadjafi, J.; Gachpazan, M., An analytical and approximate solution for nonlinear Volterra partial integro-differential equations with a weakly singular kernel using the fractional differential transform method, Int. J. Differ. Equ., 2018, 10 (2018) · Zbl 1445.37069 · doi:10.1186/s13662-017-1464-z
[20] Shivanian, E., Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arisingin population dynamics, Eng. Anal. Bound. Elem., 37, 12, 1693-1702 (2013) · Zbl 1287.65091 · doi:10.1016/j.enganabound.2013.10.002
[21] Semadeni, Z., Schauder Bases in Banach Spaces of Continuous Functions (1982), Berlín: Springer, Berlín · Zbl 0478.46014
[22] Semadeni, Z., Product Schauder bases and approximation with nodes in spaces of continuous functions, Bull. Acad. Polon. Sci., 11, 387-391 (1963) · Zbl 0124.31703
[23] Silling, SA, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 1, 175-209 (2000) · Zbl 0970.74030 · doi:10.1016/S0022-5096(99)00029-0
[24] Singh, S.; Patel, VK; Singh, VK, Operational matrix approach for the solution of partial integro-differential equation, Appl. Math. Comput., 283, 195-207 (2016) · Zbl 1410.65467
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.