×

An analytical construction of the SRB measures for baker-type maps. (English) Zbl 0986.37004

Summary: For a class of dynamical systems, called the axiom-A systems, Sinai, Ruelle and Bowen showed the existence of an invariant measure (SRB measure) weakly attracting the temporal average of any initial distribution that is absolutely continuous with respect to the Lebesgue measure. Recently, the SRB measures were found to be related to the nonequilibrium stationary state distribution functions for thermostated or open systems. Inspite of the importance of these SRB measures, it is difficult to handle them analytically because they are often singular functions.
In this article, for three kinds of baker-type maps, the SRB measures are analytically constructed with the aid of a functional equation, which was proposed by de Rham in order to deal with a class of singular functions. We first briefly review the properties of singular functions including those of de Rham. Then, the baker-type maps are described, one of which is nonconservative but time reversible, the second has a Cantor-like invariant set, and the third is a model of a simple chemical reaction \(R\leftrightarrow I\leftrightarrow P\). For the second example, the cases with and without escape are considered. For the last example, we consider the reaction processes in a closed system and in an open system under a flux boundary condition. In all cases, we show that the evolution equation of the distribution functions partially integrated over the unstable direction is very similar to de Rham’s functional equation and, employing this analogy, we explicitly construct the SRB measures.

MSC:

37A25 Ergodicity, mixing, rates of mixing
37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)

References:

[1] DOI: 10.1103/PhysRevLett.69.1356 · doi:10.1103/PhysRevLett.69.1356
[2] DOI: 10.1103/PhysRevLett.70.2209 · doi:10.1103/PhysRevLett.70.2209
[3] DOI: 10.1103/PhysRevLett.70.2209 · doi:10.1103/PhysRevLett.70.2209
[4] DOI: 10.1007/BF01049423 · Zbl 0943.82580 · doi:10.1007/BF01049423
[5] DOI: 10.1007/BF01049423 · Zbl 0943.82580 · doi:10.1007/BF01049423
[6] DOI: 10.1016/0378-4371(94)00207-A · doi:10.1016/0378-4371(94)00207-A
[7] DOI: 10.1016/0378-4371(94)00207-A · doi:10.1016/0378-4371(94)00207-A
[8] DOI: 10.1016/0378-4371(94)00207-A · doi:10.1016/0378-4371(94)00207-A
[9] DOI: 10.1007/BF02186872 · doi:10.1007/BF02186872
[10] DOI: 10.1103/PhysRevE.53.2143 · doi:10.1103/PhysRevE.53.2143
[11] DOI: 10.1103/PhysRevE.53.2123 · doi:10.1103/PhysRevE.53.2123
[12] DOI: 10.1007/BF02175553 · Zbl 0973.37014 · doi:10.1007/BF02175553
[13] DOI: 10.1007/BF02179299 · Zbl 1081.37511 · doi:10.1007/BF02179299
[14] DOI: 10.1103/PhysRevE.53.4379 · doi:10.1103/PhysRevE.53.4379
[15] DOI: 10.1007/BF02732432 · Zbl 0918.58047 · doi:10.1007/BF02732432
[16] DOI: 10.1007/BF02732432 · Zbl 0918.58047 · doi:10.1007/BF02732432
[17] DOI: 10.1103/RevModPhys.57.617 · Zbl 0989.37516 · doi:10.1103/RevModPhys.57.617
[18] DOI: 10.1007/BF01389848 · Zbl 0311.58010 · doi:10.1007/BF01389848
[19] DOI: 10.1007/BF01389848 · Zbl 0311.58010 · doi:10.1007/BF01389848
[20] DOI: 10.1007/BF01389848 · Zbl 0311.58010 · doi:10.1007/BF01389848
[21] DOI: 10.1007/BF01048873 · Zbl 0887.58045 · doi:10.1007/BF01048873
[22] DOI: 10.1063/1.165902 · Zbl 1055.82503 · doi:10.1063/1.165902
[23] DOI: 10.1063/1.165902 · Zbl 1055.82503 · doi:10.1063/1.165902
[24] DOI: 10.1063/1.165902 · Zbl 1055.82503 · doi:10.1063/1.165902
[25] DOI: 10.1063/1.165902 · Zbl 1055.82503 · doi:10.1063/1.165902
[26] DOI: 10.1063/1.165902 · Zbl 1055.82503 · doi:10.1063/1.165902
[27] DOI: 10.1103/PhysRevE.51.28 · doi:10.1103/PhysRevE.51.28
[28] DOI: 10.1103/PhysRevE.51.28 · doi:10.1103/PhysRevE.51.28
[29] DOI: 10.1103/PhysRevA.36.1502 · doi:10.1103/PhysRevA.36.1502
[30] DOI: 10.1103/PhysRevA.36.1502 · doi:10.1103/PhysRevA.36.1502
[31] DOI: 10.1016/0167-2789(85)90135-6 · Zbl 0597.58017 · doi:10.1016/0167-2789(85)90135-6
[32] DOI: 10.1103/PhysRevA.34.2520 · doi:10.1103/PhysRevA.34.2520
[33] DOI: 10.1103/PhysRevLett.76.3238 · doi:10.1103/PhysRevLett.76.3238
[34] DOI: 10.1103/PhysRevLett.76.3238 · doi:10.1103/PhysRevLett.76.3238
[35] Hunt B. R., Phys. Rev. E 54 pp 4916– (1996)
[36] DOI: 10.1103/PhysRevLett.79.2759 · Zbl 0945.82006 · doi:10.1103/PhysRevLett.79.2759
[37] DOI: 10.1103/PhysRevLett.79.2759 · Zbl 0945.82006 · doi:10.1103/PhysRevLett.79.2759
[38] DOI: 10.1103/PhysRevA.34.659 · doi:10.1103/PhysRevA.34.659
[39] DOI: 10.1007/BF01388795 · Zbl 0604.58042 · doi:10.1007/BF01388795
[40] DOI: 10.1007/BF01388795 · Zbl 0604.58042 · doi:10.1007/BF01388795
[41] DOI: 10.1007/BF01388795 · Zbl 0604.58042 · doi:10.1007/BF01388795
[42] DOI: 10.1007/BF02699133 · Zbl 0732.47003 · doi:10.1007/BF02699133
[43] DOI: 10.1007/BF02699133 · Zbl 0732.47003 · doi:10.1007/BF02699133
[44] DOI: 10.1007/BF02699133 · Zbl 0732.47003 · doi:10.1007/BF02699133
[45] DOI: 10.1007/BF02699133 · Zbl 0732.47003 · doi:10.1007/BF02699133
[46] DOI: 10.1063/1.166226 · Zbl 0938.37008 · doi:10.1063/1.166226
[47] DOI: 10.1063/1.166226 · Zbl 0938.37008 · doi:10.1063/1.166226
[48] DOI: 10.1063/1.166226 · Zbl 0938.37008 · doi:10.1063/1.166226
[49] DOI: 10.1063/1.166226 · Zbl 0938.37008 · doi:10.1063/1.166226
[50] DOI: 10.1103/PhysRevA.46.7401 · doi:10.1103/PhysRevA.46.7401
[51] DOI: 10.1103/PhysRevA.46.7401 · doi:10.1103/PhysRevA.46.7401
[52] DOI: 10.1103/PhysRevE.50.1781 · doi:10.1103/PhysRevE.50.1781
[53] DOI: 10.1103/PhysRevE.50.1781 · doi:10.1103/PhysRevE.50.1781
[54] DOI: 10.1103/PhysRevE.50.1781 · doi:10.1103/PhysRevE.50.1781
[55] DOI: 10.1063/1.165950 · doi:10.1063/1.165950
[56] DOI: 10.1063/1.165950 · doi:10.1063/1.165950
[57] DOI: 10.1063/1.165950 · doi:10.1063/1.165950
[58] DOI: 10.1016/0960-0779(94)90147-3 · Zbl 0802.45008 · doi:10.1016/0960-0779(94)90147-3
[59] DOI: 10.1016/0960-0779(94)90147-3 · Zbl 0802.45008 · doi:10.1016/0960-0779(94)90147-3
[60] de Rham G., Enseign. Math. 3 pp 71– (1957)
[61] de Rham G., Rend. Sem. Mat. Torino 16 pp 101– (1957)
[62] DOI: 10.1007/BF01010428 · doi:10.1007/BF01010428
[63] Weierstrass K., Trans. Amer. Math. Soc. 17 pp 301– (1916)
[64] DOI: 10.1016/0022-0396(69)90083-7 · Zbl 0169.42303 · doi:10.1016/0022-0396(69)90083-7
[65] DOI: 10.14492/hokmj/1470081010 · Zbl 0522.26006 · doi:10.14492/hokmj/1470081010
[66] Hata M., J. Math. Kyoto Univ 25 pp 357– (1985)
[67] Takagi T., Proc. Phys. Math. Soc. Jpn. 1 pp 176– (1903)
[68] DOI: 10.1007/BF01194647 · JFM 56.0929.02 · doi:10.1007/BF01194647
[69] DOI: 10.1007/BF03167867 · Zbl 0604.26004 · doi:10.1007/BF03167867
[70] DOI: 10.1090/S0002-9947-1943-0007929-6 · doi:10.1090/S0002-9947-1943-0007929-6
[71] DOI: 10.1016/0375-9601(83)90753-3 · doi:10.1016/0375-9601(83)90753-3
[72] DOI: 10.1016/0375-9601(83)90753-3 · doi:10.1016/0375-9601(83)90753-3
[73] DOI: 10.1016/0375-9601(83)90753-3 · doi:10.1016/0375-9601(83)90753-3
[74] DOI: 10.1016/0375-9601(83)90753-3 · doi:10.1016/0375-9601(83)90753-3
[75] Besicovitch A. S., J. London Math. Soc. 12 pp 18– (1937)
[76] DOI: 10.1017/S0143385700009615 · Zbl 0523.58024 · doi:10.1017/S0143385700009615
[77] DOI: 10.1103/PhysRevA.37.1711 · doi:10.1103/PhysRevA.37.1711
[78] DOI: 10.1103/PhysRevA.37.1711 · doi:10.1103/PhysRevA.37.1711
[79] DOI: 10.1103/PhysRevLett.78.4031 · doi:10.1103/PhysRevLett.78.4031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.