×

Hydrodynamics and fluctuations outside of local equilibrium: driven diffusive systems. (English) Zbl 1081.82595

Summary: We derive hydrodynamic equations for systems not in local thermodynamic equilibrium, that is, where the local stationary measures are non-Gibbsian and do not satisfy detailed balance with respect to the microscopic dynamics. As a main example we consider thedriven diffusive systems (DDS), such as electrical conductors in an applied field with diffusion of charge carriers. In such systems, the hydrodynamic description is provided by a nonlinear drift-diffusion equation, which we derive by a microscopic method ofnonequilibrium distributions. The formal derivation yields a Green-Kubo formula for the bulk diffusion matrix and microscopic prescriptions for the drift velocity and nonequilibrium entropy as functions of charge density. Properties of the hydrodynamic equations are established, including an H-theorem on increase of the thermodynamic potential, or entropy, describing approach to the homogeneous steady state. The results are shown to be consistent with the derivation of the linearized hydrodynamics for DDS by the Kadanoff-Martin correlation-function method and with rigorous results for particular models. We discuss also the internal noise in such systems, which we show to be governed by a generalizedfluctuation-dissipation relation (FDR), whose validity is not restricted to thermal equilibrium or to time-reversible systems. In the case of DDS, the FDR yields a version of a relation proposed some time ago by Price between the covariance matrix of electrical current noise and the bulk diffusion matrix of charge density. Our derivation of the hydrodynamic laws is in a form – the so-called Onsager force-flux form which allows us to exploit the FDR to construct the Langevin description of the fluctuations. In particular, we show that the probability of large fluctuations in the hydrodynamic histories is governed by a version of the Onsager principle of least dissipation, which estimates the probability of fluctuations in terms of the Ohmic dissipation required to produce them and provides a variational characterization of the most probable behavior as that associated to least (excess) dissipation. Finally, we consider the relation of longrange spatial correlations in the steady state of the DDS and the validity of ordinary hydrodynamic laws. We also discuss briefly the application of the general methods of this paper to other cases, such as reaction-diffusion systems or magnetohydrodynamics of plasmas.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
82C35 Irreversible thermodynamics, including Onsager-Machlup theory
Full Text: DOI

References:

[1] H. Mori,Phys. Rev. 111:694 (1958);112:1829 (1958). · Zbl 0082.39402 · doi:10.1103/PhysRev.111.694
[2] D. N. Zubarev,Nonequilibrium statistical Thermodynamics (Consultants Bureau, New York, 1974).
[3] J. A. McLennan,Introduction to Nonequilibrium Statistical Mechanics (Prentice-Hall, Englewood Cliffs, New Jersey, 1989).
[4] Y. G. Sinai,Selecta Math. Sov. 7:279 (1988).
[5] G. Eyink, Nonequilibrium statistical distributions, unpublished.
[6] G. L. Eyink, J. L. Lebowitz, and H. Spohn, Microscopic origin of hydrodynamic behavior: Entropy production and the steady-state, inChaos/Xaoc, Soviet-American Perspectives on Nonlinear Science, D. K. Campbell, ed. (American Institute of Physics, New York, 1990).
[7] D. N. Zubarev and V. G. Morozov,Physica A 120:411 (1983). · doi:10.1016/0378-4371(83)90062-6
[8] R. Zwanzig,J. Chem. Phys. 33:1338 (1960). · doi:10.1063/1.1731409
[9] A. Einstein,Ann. Phys. (Leipzig)22:180 (1907);33: 1275 (1910).
[10] L. Onsager,Phys. Rev. 37:405 (1931);38:2265 (1931). · Zbl 0001.09501 · doi:10.1103/PhysRev.37.405
[11] G. H. Wannier,Phys. Rev. 83:281 (1951);87:795 (1952). · Zbl 0043.43802 · doi:10.1103/PhysRev.83.281
[12] G. H. Wannier,Bell. Syst. Techn. J. 32:170 (1953).
[13] P. A. Markowich, C. A. Ringhofer, and C. Schmeisser,Semiconductor Equations (Springer, Vienna, 1990). · Zbl 0765.35001
[14] S. Katz, J. L. Lebowitz, and H. Spohn,J. Stat. Phys. 34:497 (1984). · doi:10.1007/BF01018556
[15] B. Schmittmann and R. K. P. Zia, Statistical mechanics of driven diffusive systems, inPhase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1995).
[16] R. Esposito, R. Marra, and H. T. Yau, Diffusive limit of asymmetric simple exclusion, inThe State of Matter, M. Aizenmann and H. Araki, eds (World Scientific, Singapore, 1994). · Zbl 0841.60082
[17] C. Landim, S. Olla, and H.-T. Yau, First-order correction for the hydrodynamic limit of asymmetric simple exclusion processes in dimensiond, Preprint, Ecole Polytechnique, R.I. No. 307 (Novemeber 1994). · Zbl 0866.76003
[18] V. P. Kalashnikov,Phys. Lett. A 26:433 (1968). · doi:10.1016/0375-9601(68)90262-4
[19] N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Y. G. Sinai,Commun. Math. Phys. 154:569 (1993). · Zbl 0780.58050 · doi:10.1007/BF02102109
[20] H. Spohn,Large Scale Dynamics of Interacting Particles (Springer-Verlag, New York, 1991). · Zbl 0742.76002
[21] P. J. Price, InFluctuation Phenomena in Solids, R. E. Burgess, ed. (Academic Press, New York, 1965), p. 355.
[22] L. P. Kadanoff and P. C. Martin,Ann. Phys. (N.Y.) 24:419 (1963). · Zbl 0131.45002 · doi:10.1016/0003-4916(63)90078-2
[23] D. Forster,Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, Reading, Massachusetts, 1975).
[24] R. Graham,Z. Phys. B 26:397 (1977). · doi:10.1007/BF01570750
[25] R. Graham,Z. Phys. B 26:281 (1977). · doi:10.1007/BF01312935
[26] H.-O. Georgii,Gibbs Measures and Phase Transitions (de Gruyter, Berlin, 1988). · Zbl 0657.60122
[27] L. D. Landau and E. M. Lifshitz,Electrodynamics of Continuous Media (Pergamon, London, 1960). · Zbl 0122.45002
[28] S. R. de Groot and P. Mazur,Nonequilibrium Thermodynamics (North-Holland, Amsterdam, 1962).
[29] H. B. Callen,Thermodynamics (Wiley, New York, 1960). · Zbl 0095.23301
[30] P. L. Garrido, J. L. Lebowitz, C. Maes, and H. Spohn,Phys. Rev. A 42: 1954 (1990). · doi:10.1103/PhysRevA.42.1954
[31] J. L. Lebowitz and R. H. Schonmann,Prob. Theory Related Fields 77:49 (1988). · Zbl 0617.60097 · doi:10.1007/BF01848130
[32] R. S. Ellis,Entropy, Large Deviations, and Statistical Mechanics (Springer, New York, 1985). · Zbl 0566.60097
[33] H. Künsch,Z. Wahrsch. Geb. 66:407 (1984). · Zbl 0541.60098 · doi:10.1007/BF00533706
[34] G. L. Eyink, Entropy, statistical mechanics, and PDE’s, unpublished.
[35] H. van Beijeren,J. Stat. Phys. 35:399 (1984). · Zbl 0591.60079 · doi:10.1007/BF01014393
[36] L. Onsager and S. Machlup,Phys. Rev. 91:1505 (1953). · Zbl 0053.15106 · doi:10.1103/PhysRev.91.1505
[37] G. L. Eyink,J. Stat. Phys. 61:533 (1990). · doi:10.1007/BF01027291
[38] H. Haken,Synergetics (Springer-Verlag, Berlin, 1978).
[39] J. W. Dufty and J. M. Rubi,Phys. Rev. A 36:222 (1987). · doi:10.1103/PhysRevA.36.222
[40] J. A. Krommes and G. Hu,Phys. Fluids B 5:3908 (1993). · doi:10.1063/1.860614
[41] L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon Press, London, 1959).
[42] R. Stratonovich,Nonlinear Nonequilibrium Thermodynamics I (Springer, Berlin, 1992). · Zbl 0786.73002
[43] A. Einstein,Ann. Phys. (Leipzig)17:549 (1905). · JFM 36.0975.01 · doi:10.1002/andp.19053220806
[44] B. Callen and T. A. Welton,Phys. Rev.,83:34 (1951). · Zbl 0044.41201 · doi:10.1103/PhysRev.83.34
[45] H. Nyquist,Phys. Rev. 32:110 (1928). · doi:10.1103/PhysRev.32.110
[46] R. F. Fox and G. E. Uhlenbeck,Phys. Fluids 13:1893 (1970). · Zbl 0209.57503 · doi:10.1063/1.1693183
[47] K. Tomita and H. Tomita,Prog. Theor. Phys. 51:1731 (1974). · doi:10.1143/PTP.51.1731
[48] S. V. Gantsevich, V. L. Gurevich, and R. Katillius,Nuovo Cimento 2:1 (1979). · doi:10.1007/BF02507712
[49] A.-M. S. Tremblay, InRecent Developments in Nonequilibrium Thermodynamics (Springer, Berlin, 1984).
[50] C. Landim, S. Olla, and H. T. Yau, Some properties of the diffusion coefficient for asymmetric simple exclusion process, Ecole Polytechnique, R.I. No. 327 (June 1995). · Zbl 0872.60078
[51] M. Q. Zhang, J. S. Wang, J. L. Lebowitz, and J. L. Valles,J. Stat. Phys. 52: 1461 (1988). · doi:10.1007/BF01011660
[52] R. K. P. Zia and B. Schmittmann, On singularities in the disordered phase of a driven diffusive system, preprint (1995).
[53] A. Aharony,Phys. Rev. B 8:3363 (1973). · doi:10.1103/PhysRevB.8.3363
[54] J. Skalyo, B. C. Frazer, and Shirane,Phys. Rev. B 1:278 (1970). · doi:10.1103/PhysRevB.1.278
[55] E. R. Speer, The two species, totally asymmetric simple exclusion process, inOn Three Levels, M. Fannes, C. Maes, and A. Verbeure, eds. (Plenum Press, New York, 1994). p. 91. · Zbl 0872.60084
[56] B. Derrida, S. Janowsky, J. L. Lebowitz, and E. Speer,Europhys. Lett. 22: 651 (1993);J. Stat. Phys. 73:813 (1993). · doi:10.1209/0295-5075/22/9/003
[57] B. M. Law, R. W. Gammon, and J. V. Sengers,Phys. Rev. Lett. 60:1554 (1988). · doi:10.1103/PhysRevLett.60.1554
[58] V. G. Morozov,Physica A 126:461 (1984). · Zbl 0599.76119 · doi:10.1016/0378-4371(84)90211-5
[59] R. Graham and H. Haken,Z. Phys. 243:289 (1971);245: 141 (1971). · doi:10.1007/BF01394858
[60] D. Gabrielli, G. Jona-Lasinio, and C. Landim, Onsager reciprocity relations without microscopic reversibility, preprint [mp_arc@ftp.ma.utexas.edu, #95-366]. · Zbl 1042.82601
[61] C. Kipnis, S. Olla, and S. R. S. Varadhan,Commun. Pure Appl. Math. XLII:243 (1989).
[62] R. Graham, InOrder and Fluctuations in Equilibrium and Nonequilibrium Statistical Mechanics, G. Nicolis, G. Dewel, and J. W. Turner, eds. (Wiley, New York, 1981).
[63] R. Graham, InStochastic Processes in Nonequilibrium Systems, L. Garrido, P. Seglar, and P. J. Shephard, eds. (Springer, Berlin, 1978).
[64] M. I. Freidlin and A. D. Wentzell,Random Perturbations of Dynamical Systems (Springer, New York, 1984). · Zbl 0522.60055
[65] D. A. Dawson and J. GärtnerStochastics 20:247 (1987).
[66] Y. Oono,Prog. Theor. Phys. Suppl. 99:165 (1989). · doi:10.1143/PTPS.99.165
[67] E. B. Pitman and D. G. Schaeffer,Commun. Pure Appl. Math. 40:421 (1987). · Zbl 0676.76046 · doi:10.1002/cpa.3160400403
[68] A. De Masi, E. Presutti, and J. L. Lebowitz,J. Stat. Phys. 55:523 (1986).
[69] G. Jona-Lasinio, C. Landim, and M. E. Vares,Prob. Theory Related Fields 97:339 (1993). · Zbl 0792.60096 · doi:10.1007/BF01195070
[70] G. Jona-Lasinio,Ann. Inst. H. Poincaré 55(2):751 (1991).
[71] R. Balescu,Transport Process in Plasmas (North-Holland, Amsterdam, 1988).
[72] R. Balescu,Phys. Fluids B 3:564 (1991). · doi:10.1063/1.859855
[73] A. van Enter, R. Fernández, and A. Sokel,J. Stat. Phys. 72:879 (1993). · Zbl 1101.82314 · doi:10.1007/BF01048183
[74] T. J. Liggett,Interacting Particle Systems (Springer, Berlin, 1985). · Zbl 0559.60078
[75] F. Rezakhanlou,Commun. Math. Phys. 140:417 (1991). · Zbl 0738.60098 · doi:10.1007/BF02099130
[76] H. van Beijeren, R. Kutner, and H. Spohn,Phys. Rev. Lett. 54:2026 (1985). · doi:10.1103/PhysRevLett.54.2026
[77] J. Krug and H. Spohn, Kinetic roughening of growing surfaces inSolids Far From Equilibrium: Growth, Morphology and Defects, C. Godréche, ed. (Cambridge University Press, Cambridge, 1991).
[78] Lin Xu, Diffusion limit for lattice gas with short-range interactions, Thesis, NYU (1993).
[79] H. O. Georgii,Canonical Gibbs Measures (Springer-Verlag, Berlin, 1979).
[80] R. H. Kraichnan,Phys. Rev. 113:1181 (1959). · doi:10.1103/PhysRev.113.1181
[81] G. Gallavotti and E. Verboven,Nuovo Cimento 28:274 (1975). · doi:10.1007/BF02722820
[82] M. Aizenman et al.,Commun. Math. Phys. 53:209 (1977). · doi:10.1007/BF01609847
[83] M. Aizenman et al.,Commun. Math. Phys. 48:1 (1976). · doi:10.1007/BF01609407
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.