×

On a general nonlinear problem with distributed delays. (English) Zbl 1375.34109

J. Contemp. Math. Anal., Armen. Acad. Sci. 52, No. 4, 184-190 (2017) and Izv. Nats. Akad. Nauk Armen., Mat. 52, No. 4, 72-80 (2017).
From the introduction: We deal with the following system of equations: \[ x_i'(t)=- a_i(t) x_i(t)+ \sum^m_{j=1} f_{ij}\Biggl(t, x_j(t),\;\int^t_{-\infty} K_{ij}(t,s,x_j(s))\,ds\Biggr)+ c_i(t), \] \(i= 1,\dots, m\), with given continuous functions \(x_j(t)= x_{0j}(t)\), \(t\in(-\infty, 0]\), \(a_i(t)\geq 0\) and \(c_i(t)\), \(i= 1,\dots, m\), \(t>0\). The functions \(f_{ij}\) and \(K_{ij}\), \(i,j= 1,\dots, m\), are assumed to be nonlinear and continuous, and satisfy some conditions.

MSC:

34K25 Asymptotic theory of functional-differential equations
34K20 Stability theory of functional-differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] G. Bao and Z. Zeng, “Analysis and design of associative memories based on recurrent neural network with discontinuous activation functions”, Neurocomputing, 77, 101-107, 2012. · doi:10.1016/j.neucom.2011.08.026
[2] Z. Cai and L. Huang, “Existence and global asymptotic stability of periodic solution for discrete and distributed time-varying delayed neural networks with discontinuous activations”, Neurocomputing, 74, 3170-3179, 2011. · doi:10.1016/j.neucom.2011.04.027
[3] U. D. Dongade and S. G. Deo, “Pointwise estimates of solutions of some Volterra integral equations”, J. Math. Anal. Appl., 45 (3), 615-628, 1974. · Zbl 0271.45001 · doi:10.1016/0022-247X(74)90055-9
[4] M. Forti, M. Grazzini, P. Nistri and L. Pancioni, “Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations”, PhysicaD, 214, 88-99, 2006. · Zbl 1103.34044
[5] B. Kosko, Neural Network and Fuzzy System - A Dynamical System Approach toMachine Intelligence (Prentice-Hall of India, New Delhi, 1991).
[6] Lakshmikhantam, V.; Leela, S., Differential and Integral Inequalities: Theory and Applications (1969), New York-London · Zbl 1522.34002
[7] S. Mohamad, K. Gopalsamy and H. Akca, “Exponential stability of artificial neural networks with distributed delays and large impulses”, Nonl. Anal.: RealWorld Applications, 9, 872-888, 2008. · Zbl 1154.34042 · doi:10.1016/j.nonrwa.2007.01.011
[8] J. Park, “On global stability criterion of neural networks with continuously distributed delays”, Chaos Solitons & Fractals, 37, 444-449, 2008. · Zbl 1141.93054 · doi:10.1016/j.chaos.2006.09.021
[9] Z. Qiang, M. A. Run-Nian and X. Jin, “Global exponential convergence analysis ofHopfieldNeuralNetworks with continuously distributed delays”, Commun. Theor. Phys., 39 (3), 381-384, 2003. · doi:10.1088/0253-6102/39/3/381
[10] N.-e. Tatar, “Hopfield neural networkswith unbounded monotone activation functions”, Adv. Artificial Neural Netw. Syst., ID 571358, 1-5, 2012.
[11] N.-e. Tatar, “Control of systems with Hölder continuous functions in the distributed delays”, Carpathian J. Math., 30 (1), 123-128, 2014. · Zbl 1324.34151
[12] Y. X. Wang, Q. Y. Zhou, B. Xiao and Y. H. Yu, “Global exponential stability of cellular neural networks with continuously distributed delays and impulses”, Physics Letters A, 350, 89-95, 2006. · Zbl 1195.34064 · doi:10.1016/j.physleta.2005.10.084
[13] H. Wu, F. Tao, L. Qin, R. Shi and L. He, “Robust exponential stability for interval neural networks with delays and non-Lipschitz activation functions”, Nonlinear Dyn., 66, 479-487, 2011. · Zbl 1242.93113 · doi:10.1007/s11071-010-9926-9
[14] Q. Zhang, X. P. Wei and J. Xu, “Global exponential stability of Hopfield neural networks with continuously distributed delays”, Physics Letters A, 315, 431-436, 2003. · Zbl 1038.92002 · doi:10.1016/S0375-9601(03)01106-X
[15] J. Zhou, S. Y. Li and Z. G. Yang, “Global exponential stability of Hopfield neural networks with distributed delays”, Appl.Math. Model., 33, 1513-152, 2009. · Zbl 1168.34359 · doi:10.1016/j.apm.2008.02.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.