×

Notes on linear factor polynomial deflation in polynomial bases. (English) Zbl 1255.15013

Summary: Scalar polynomials as approximations to more general scalar functions lead to the study of scalar polynomials represented in a variety of classical systems of polynomials, including orthogonal systems and Lagrange polynomials, for example. This article, motivated in part by analogy with the existing methods for linear factor polynomial deflation in the monomial basis, finds forward and backward deflation formulae for several such representations. It also finds the sensitivity factor of the deflation process for each representation.

MSC:

15A22 Matrix pencils
65H04 Numerical computation of roots of polynomial equations
65H10 Numerical computation of solutions to systems of equations

Software:

OPQ
Full Text: DOI

References:

[1] Amiraslani A, Ph.D. Diss. (2006)
[2] DOI: 10.1016/j.tcs.2007.04.019 · Zbl 1140.65032 · doi:10.1016/j.tcs.2007.04.019
[3] Aruliah DA, Research Report, Ontario Research Centre for Computer Algebra (ORCCA), TR-07-02, London, ON, Canada, 2007
[4] DOI: 10.1137/S0036144502417715 · Zbl 1061.65006 · doi:10.1137/S0036144502417715
[5] DOI: 10.1145/363018.363063 · Zbl 0147.35501 · doi:10.1145/363018.363063
[6] DOI: 10.1093/imamat/16.3.271 · Zbl 0357.65031 · doi:10.1093/imamat/16.3.271
[7] DOI: 10.1007/s11786-007-0010-x · Zbl 1136.15012 · doi:10.1007/s11786-007-0010-x
[8] Davis PJ, Interpolation and Approximation (1963)
[9] Dumitrescu, B and Tabus, I. 1999.How to Deflate Polynomials in LSP Computation, 52–54. Finland: Proceedings of the IEEE Workshop on Speech Coding.
[10] Farin G, Curves and Surfaces for Computer-Aided Geometric Design (1997)
[11] DOI: 10.1016/S0167-8396(03)00095-5 · Zbl 1069.65551 · doi:10.1016/S0167-8396(03)00095-5
[12] DOI: 10.1093/imamat/16.3.263 · Zbl 0329.65032 · doi:10.1093/imamat/16.3.263
[13] DOI: 10.1137/0715014 · Zbl 0376.65023 · doi:10.1137/0715014
[14] Gautschi W, Orthogonal Polynomials: Computation and Approximation (2004)
[15] DOI: 10.1007/BF02207698 · Zbl 0869.65030 · doi:10.1007/BF02207698
[16] DOI: 10.1093/imanum/24.4.547 · Zbl 1067.65016 · doi:10.1093/imanum/24.4.547
[17] DOI: 10.1093/imamat/8.1.16 · Zbl 0232.65041 · doi:10.1093/imamat/8.1.16
[18] Rivlin T, Chebyshev Polynomials (1990)
[19] Wilkinson J, Rounding Errors in Algebraic Processes (1964)
[20] J. Wilkinson,The perfidious polynomial, inStudies in Numerical Analysis, Studies in Mathematics, Vol. 24, G.H. Golub, ed., Mathematical Association of America, Washington, DC, 1984, pp. 1–28 · Zbl 0601.65028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.