×

A class of modified BFGS methods with function value information for unconstrained optimization. (English) Zbl 1401.90269

Summary: Based on some new interpolation conditions, a quadratic interpolation model is constructed to approximate the objective function, and then a class of modified BFGS methods with function value information is presented. The new methods satisfy some new weak secant equations and there is a parameter \(\gamma\) in the update formulae which ranges from zero to one. The global and local superlinear convergence properties of the new modified BFGS methods are proved. Numerical results for standard test problems from CUTE are reported, which indicate that all the methods in the proposed class perform well. Ensuring the sufficient positive definiteness of the updating matrices, an adaptive BFGS quasi-Newton method by dynamically choosing the parameter \(\gamma\) is proposed, which may be competitive with other BFGS modifications.

MSC:

90C53 Methods of quasi-Newton type
65K05 Numerical mathematical programming methods
65K10 Numerical optimization and variational techniques
Full Text: DOI

References:

[1] Al-Baali M., AMO–Advanced Modeling and Optimization 11 pp 63–
[2] Al-Baali M., Computational Optimization and Applications · Zbl 0797.90086
[3] DOI: 10.1137/0914080 · Zbl 0793.65047 · doi:10.1137/0914080
[4] DOI: 10.1093/imanum/8.1.141 · Zbl 0638.65055 · doi:10.1093/imanum/8.1.141
[5] Bongartz I., ACM Transactions on Mathematical Software 20 pp 123–
[6] DOI: 10.1090/S0025-5718-1967-0224273-2 · doi:10.1090/S0025-5718-1967-0224273-2
[7] DOI: 10.1137/0724077 · Zbl 0657.65083 · doi:10.1137/0724077
[8] DOI: 10.1137/0726042 · Zbl 0676.65061 · doi:10.1137/0726042
[9] DOI: 10.1137/S1052623401383455 · Zbl 1036.65052 · doi:10.1137/S1052623401383455
[10] DOI: 10.1023/A:1014838419611 · Zbl 1008.90056 · doi:10.1023/A:1014838419611
[11] DOI: 10.1137/0717023 · Zbl 0424.65026 · doi:10.1137/0717023
[12] DOI: 10.1137/0719025 · Zbl 0478.65030 · doi:10.1137/0719025
[13] DOI: 10.1007/BF02592055 · Zbl 0523.90078 · doi:10.1007/BF02592055
[14] Dennis J. E., SIAM Review 19 pp 546–
[15] DOI: 10.1137/1021091 · Zbl 0424.65020 · doi:10.1137/1021091
[16] Ford J. A., Journal of Computational and Applied Mathematics 50 pp 357–
[17] DOI: 10.1016/0377-0427(95)00178-6 · Zbl 0856.65073 · doi:10.1016/0377-0427(95)00178-6
[18] DOI: 10.1016/S0377-0427(00)00540-9 · Zbl 0984.65055 · doi:10.1016/S0377-0427(00)00540-9
[19] DOI: 10.1080/10556780701646360 · Zbl 1211.90293 · doi:10.1080/10556780701646360
[20] DOI: 10.1137/S1052623402418991 · Zbl 1114.90126 · doi:10.1137/S1052623402418991
[21] DOI: 10.1137/S1052623494266365 · Zbl 0898.90119 · doi:10.1137/S1052623494266365
[22] R. S. Schnabel, Nonlinear Programming, The State of the Art, eds. A. Bachem, M. Grotschel and B. Krote (Springer-Verlag, Berlin, 1983) pp. 417–438.
[23] Wang H. J., Applied Mathematics and Comptation 208 pp 62–
[24] Wang H. J., OR Transactions 11 pp 1–
[25] DOI: 10.1016/j.amc.2005.08.027 · Zbl 1100.65054 · doi:10.1016/j.amc.2005.08.027
[26] DOI: 10.1023/A:1012959223138 · Zbl 1007.90069 · doi:10.1023/A:1012959223138
[27] DOI: 10.1093/imanum/11.3.325 · Zbl 0733.65039 · doi:10.1093/imanum/11.3.325
[28] Yuan Y. X., Journal of Computational Mathematics 13 pp 95–
[29] Yuan Y. X., Optimization Theory and Methods (1997)
[30] DOI: 10.1023/A:1021898630001 · Zbl 0991.90135 · doi:10.1023/A:1021898630001
[31] DOI: 10.1016/S0377-0427(00)00713-5 · Zbl 1001.65065 · doi:10.1016/S0377-0427(00)00713-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.