×

Optimal control of the Fokker-Planck equation with space-dependent controls. (English) Zbl 1373.35311

Summary: This paper is devoted to the analysis of a bilinear optimal control problem subject to the Fokker-Planck equation. The control function depends on time and space and acts as a coefficient of the advection term. For this reason, suitable integrability properties of the control function are required to ensure well posedness of the state equation. Under these low regularity assumptions and for a general class of objective functionals, we prove the existence of optimal controls. Moreover, for common quadratic cost functionals of tracking and terminal type, we derive the system of first-order necessary optimality conditions.

MSC:

35Q84 Fokker-Planck equations
35Q93 PDEs in connection with control and optimization
49J20 Existence theories for optimal control problems involving partial differential equations
49K20 Optimality conditions for problems involving partial differential equations
Full Text: DOI

References:

[1] Kolmogoroff, A.: Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104(1), 415-458 (1931). doi:10.1007/BF01457949 · JFM 57.0613.03 · doi:10.1007/BF01457949
[2] Gardiner, C.: Stochastic Methods. A Handbook for the Natural and Social Sciences. Springer Series in Synergetics, 4th edn. Springer, Berlin (2009) · Zbl 1181.60001
[3] Horsthemke, W., Lefever, R.: Noise-Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology. Springer Series in Synergetics, vol. 15. Springer, Berlin (1984) · Zbl 0529.60085
[4] Le Bris, C., Lions, P.L.: Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients. Commun. Partial Differ. Equ. 33(7-9), 1272-1317 (2008). doi:10.1080/03605300801970952 · Zbl 1157.35301 · doi:10.1080/03605300801970952
[5] Figalli, A.: Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J. Funct. Anal. 254(1), 109-153 (2008). doi:10.1016/j.jfa.2007.09.020 · Zbl 1169.60010 · doi:10.1016/j.jfa.2007.09.020
[6] Porretta, A.: Weak solutions to Fokker-Planck equations and mean field games. Arch. Ration. Mech. Anal. 216(1), 1-62 (2015). doi:10.1007/s00205-014-0799-9 · Zbl 1312.35168 · doi:10.1007/s00205-014-0799-9
[7] Brockett, R.: New issues in the mathematics of control. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited—2001 and Beyond, pp. 189-219. Springer, Berlin (2001) · Zbl 1005.93002
[8] Forbes, M.G., Forbes, J.F., Guay, M.: Regulating discrete-time stochastic systems: focusing on the probability density function. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 11(1-2), 81-100 (2004) · Zbl 1036.93042
[9] Jumarie, G.: Tracking control of nonlinear stochastic systems by using path cross-entropy and Fokker-Planck equation. Int. J. Syst. Sci. 23(7), 1101-1114 (1992). doi:10.1080/00207729208949368 · Zbl 0761.93068 · doi:10.1080/00207729208949368
[10] Kárný, M.: Towards fully probabilistic control design. Autom. J. IFAC 32(12), 1719-1722 (1996). doi:10.1016/S0005-1098(96)80009-4 · Zbl 0868.93022 · doi:10.1016/S0005-1098(96)80009-4
[11] Wang, H.: Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability. IEEE Trans. Autom. Control 44(11), 2103-2107 (1999). doi:10.1109/9.802925 · Zbl 1136.93441 · doi:10.1109/9.802925
[12] Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Applications of Mathematics, No. 1. Springer, Berlin, New York (1975) · Zbl 0323.49001 · doi:10.1007/978-1-4612-6380-7
[13] Annunziato, M., Borzì, A.: Optimal control of probability density functions of stochastic processes. Math. Model. Anal. 15(4), 393-407 (2010). doi:10.3846/1392-6292.2010.15.393-407 · Zbl 1216.35154 · doi:10.3846/1392-6292.2010.15.393-407
[14] Annunziato, M., Borzì, A.: A Fokker-Planck control framework for multidimensional stochastic processes. J. Comput. Appl. Math. 237(1), 487-507 (2013). doi:10.1016/j.cam.2012.06.019 · Zbl 1251.35196 · doi:10.1016/j.cam.2012.06.019
[15] Blaquière, A.: Controllability of a Fokker-Planck equation, the Schrödinger system, and a related stochastic optimal control (revised version). Dyn. Control 2(3), 235-253 (1992). doi:10.1007/BF02169515 · Zbl 0760.93083 · doi:10.1007/BF02169515
[16] Porretta, A.: On the planning problem for the mean field games system. Dyn. Games Appl. 4(2), 231-256 (2014). doi:10.1007/s13235-013-0080-0 · Zbl 1314.91021 · doi:10.1007/s13235-013-0080-0
[17] Addou, A., Benbrik, A.: Existence and uniqueness of optimal control for a distributed-parameter bilinear system. J. Dyn. Control Syst. 8(2), 141-152 (2002). doi:10.1023/A:1015372725255 · Zbl 1036.49007 · doi:10.1023/A:1015372725255
[18] Fleig, A., Grüne, L., Guglielmi, R.: Some results on model predictive control for the Fokker-Planck equation. In: MTNS 2014: 21st International Symposium on Mathematical Theory of Networks and Systems, July 7-11, 2014, pp. 1203-1206. University of Groningen, The Netherlands (2014) · Zbl 0059.11601
[19] Aronson, D.G.: Non-negative solutions of linear parabolic equations. Ann. Sc. Norm. Super. Pisa 3(22), 607-694 (1968) · Zbl 0182.13802
[20] Aronson, D.G., Serrin, J.: Local behavior of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 25, 81-122 (1967) · Zbl 0154.12001 · doi:10.1007/BF00281291
[21] Casas, E.: Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35(4), 1297-1327 (1997). doi:10.1137/S0363012995283637 · Zbl 0893.49017 · doi:10.1137/S0363012995283637
[22] Raymond, J.P., Zidani, H.: Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39(2), 143-177 (1999). doi:10.1007/s002459900102 · Zbl 0922.49013 · doi:10.1007/s002459900102
[23] Primak, S., Kontorovich, V., Lyandres, V.: Stochastic methods and their applications to communications. Wiley, Hoboken (2004). doi:10.1002/0470021187 · Zbl 1081.60001 · doi:10.1002/0470021187
[24] Protter, P.E.: Stochastic Integration and Differential Equations. Stochastic Modelling and Applied Probability, vol. 21. Springer, Berlin (2005). doi:10.1007/978-3-662-10061-5 · doi:10.1007/978-3-662-10061-5
[25] Risken, H.: The Fokker-Planck Equation. Springer Series in Synergetics, vol. 18, 2nd edn. Springer, Berlin (1989). doi:10.1007/978-3-642-61544-3 · Zbl 0665.60084 · doi:10.1007/978-3-642-61544-3
[26] Feller, W.: Diffusion processes in one dimension. Trans. Am. Math. Soc. 77, 1-31 (1954) · Zbl 0059.11601 · doi:10.1090/S0002-9947-1954-0063607-6
[27] Gīhman, Ĭ.Ī., Skorohod, A.V.: Stochastic Differential Equations. Springer, New York, Heidelberg (1972). Translated from the Russian by Kenneth Wickwire, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 72 · Zbl 0242.60003
[28] Tröltzsch, F.: Optimal Control of Partial Differential Equations, Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence (2010). doi:10.1090/gsm/112 · Zbl 1195.49001 · doi:10.1090/gsm/112
[29] Aubin, J.P.: Un théorème de compacité. C. R. Acad. Sci. Paris 256, 5042-5044 (1963) · Zbl 0195.13002
[30] Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod; Gauthier-Villars, Paris (1969) · Zbl 0189.40603
[31] Simon, J.: Compact sets in the space \[L^p(0, T;B)\] Lp(0,T;B). Ann. Mat. Pura Appl. (4) 146, 65-96 (1987). doi:10.1007/BF01762360 · Zbl 0629.46031 · doi:10.1007/BF01762360
[32] Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987). doi:10.1017/CBO9781139171755 · Zbl 0623.35006 · doi:10.1017/CBO9781139171755
[33] Ladyzhenskaya, O., Solonnikov, V., Ural’tseva, N.: Linear and Quasilinear Equations of Parabolic Type. Izdat. ’Nauka’, Moskva (1967) · Zbl 0164.12302
[34] Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170. Springer, New York, Berlin (1971) · Zbl 0203.09001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.