×

Posets isomorphic to their extensions. (English) Zbl 0575.06003

An isomorphism \(f: P\to Q\) of a poset P onto a collection Q of its lower ends, or, down-closed subsets of P (ordered by inclusion) is said to be recycling if \(Y\in Q\) implies \(\cup_{y\in Y}f(y)\in Q\). Consequences of the existence of recycling isomorphisms are investigated. For example, if Q contains all lower ends of well-ordered subsets of P, then P satisfies the ascending-chain condition, and Q is the set of all principle ideals of P.
Reviewer: J.Adámek

MSC:

06B23 Complete lattices, completions
06A06 Partial orders, general
Full Text: DOI

References:

[1] J.Adámek (1982) Construction of free continuous algebras, Algebra Universalis 14, 140-166. · Zbl 0488.06005 · doi:10.1007/BF02483917
[2] B.Banaschewski (1956) Hüllensysteme und Erweiterung von Quasi-Ordnungen, Z. Math. Logik Grundlagen der Mathematik 2, 117-130. · Zbl 0073.26904 · doi:10.1002/malq.19560020803
[3] B.Banaschewski and E.Nelson (1979) Completions of partially ordered sets as reflections, Comp. Science Tech. Report No 79-CS-6, McMaster University, Hamilton, Ontario. · Zbl 0493.06002
[4] N.Bourbaki (1949) Sur le théorème de Zorn, Arch. Math. 2, 434-437. · Zbl 0045.32902 · doi:10.1007/BF02036949
[5] R. P.Dilworth and A. M.Gleason (1962) A generalized Cantor theorem. Proc. Am. Math. Soc. 13, 704-705. · Zbl 0109.24203 · doi:10.1090/S0002-9939-1962-0144824-3
[6] M.Erné (1981) Scott convergence and Scott topology in partially ordered sets II, in: Continuous Lattices, Proc. Bremen 1979, Lecture Notes in Math, Vol. 871, Springer-Verlag, Berlin, Heidelberg, New York, pp. 61-96.
[7] M.Erné (1982) Einführung in die Ordnungstheorie, B.I. Wissenschaftsverlag, Mannheim.
[8] M.Erné (1983) Adjunctions and standard constructions for partially ordered sets, in: Contributions to General Algebra Vol. 2, Proc. Klagenfurt Conf. 1982. Teubner, Stuttgart, pp. 77-106.
[9] M.Erné and G.Wilke (1983) Standard completions for quasiordered sets. Semigroup Forum 27, 351-376. · Zbl 0517.06009 · doi:10.1007/BF02572747
[10] I.Fleischer (1976) Even every join-extension solves a universal problem, J. Austral. Math. Soc. 21, 220-223. · Zbl 0326.06001 · doi:10.1017/S1446788700017808
[11] O.Frink (1954) Ideals in partially ordered sets. Amer. Math. Monthly 61, 223-234. · Zbl 0055.25901 · doi:10.2307/2306387
[12] G.Gierz, K. H.Hofmann, K.Keimel, J. D.Lawson, M.Mislove, and D. S.Scott (1980) A Compendium of Continuous Lattices, Springer-Verlag, Berlin, Heidelberg, New York. · Zbl 0452.06001
[13] D.Higgs (1971) Lattices isomorphic to their ideal lattices. Algebra Universalis 1, 71-72. · Zbl 0219.06003 · doi:10.1007/BF02944957
[14] R.-E.Hoffmann (1979) Continuous posets and adjoint sequences, Semigroup Forum 18, 173-188. · Zbl 0427.06003 · doi:10.1007/BF02574184
[15] T. J.Jech (1973) The Axiom of Choice, North-Holland, Amsterdam, London. · Zbl 0259.02051
[16] J. D.Lawson (1979) The duality of continuous posets, Houston J. Math. 5, 357-386. · Zbl 0428.06003
[17] J.Meseguer (1983) Order completion monads, Algebra Universalis 16, 63-82. · Zbl 0522.18005 · doi:10.1007/BF01191754
[18] J.Schmidt (1956) Zur Kennzeichnung der Dedekind-MacNeilleschen Hülle einer geordneten Hülle, Arch. Math. 7, 241-249. · Zbl 0073.03801 · doi:10.1007/BF01900297
[19] J.Schmidt (1974) Each join-completion of a partially ordered set is the solution of a universal problem, J. Austral. Math. Soc. 17, 406-413. · Zbl 0304.06003 · doi:10.1017/S1446788700018048
[20] J. B.Wright, E. G.Wagner, and J. W.Thatcher (1978) A uniform approach to inductive posets and inductive closure. Theor. Comp. Sci. 7, 57-77. · Zbl 0732.06001 · doi:10.1016/0304-3975(78)90040-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.