×

A network approach for evaluating coherence in multivariate systems: an application to psychophysiological emotion data. (English) Zbl 1208.62191

Summary: We present an approach for evaluating coherence in multivariate systems that considers all the variables simultaneously. We operationalize the multivariate system as a network and define coherence as the efficiency with which a signal is transmitted throughout the network. We illustrate this approach with time series data from 15 psychophysiological signals representing individuals’ moment-by-moment emotional reactions to emotional films. First, we summarize the time series through nonparametric Receiver Operating Characteristic (ROC) curves. Second, we use Spearman rank correlations to calculate relationships between each pair of variables. Third, based on the obtained associations, we construct a network using the variables as nodes. Finally, we examine signal transmission through all the nodes in the network. Our results indicate that the network consisting of the 15 psychophysiological signals has a small-world structure, with three clusters of variables and strong within-cluster connections. This structure supports an effective signal transmission across the entire network. When compared across experimental conditions, our results indicate that coherence is relatively stronger for intense emotional stimuli than for neutral stimuli. These findings are discussed in relation to multivariate methods and emotion theories.

MSC:

62P15 Applications of statistics to psychology
91E30 Psychophysics and psychophysiology; perception
62H99 Multivariate analysis
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62H20 Measures of association (correlation, canonical correlation, etc.)
Full Text: DOI

References:

[1] Albert, R., Jeong, H., & Barabási, A.-L. (1999). Diameter of the world–wide web. Nature, 401, 130–131. · doi:10.1038/43601
[2] Amaral, L.A.N., Diaz–Guilera, A., Moreira, A.A., Goldberger, A.L., & Lipsitz, L.A. (2004). Emergence of complex dynamics in a simple model of signaling network. Proceedings of the National Academy of Sciences, 101, 155551–155555. · Zbl 1075.92001 · doi:10.1073/pnas.0404843101
[3] Boker, S.M., Xu, M., Rotondo, J.L., & King, K. (2002). Windowed cross-correlation and peak picking for the analysis of variability in the association between behavioral time series. Psychological Methods, 7, 338–355. · doi:10.1037/1082-989X.7.3.338
[4] Brillinger, D.R. (2001). Does anyone know when the correlation coefficient is useful? A study of the times of extreme river flows. Technometrics, 43, 266–273. · doi:10.1198/004017001316975871
[5] Browne, M.W., & Nesselroade, J.R. (2005). Representing psychological processes with dynamic factor models: some promising uses and extensions of ARMA time series models. In A. Maydeu-Olivares & J.J. McArdle (Eds.), Advances in psychometrics: a Festschrift to Roderick P. McDonald (pp. 415–451). Mahwah: Erlbaum.
[6] Cattell, R.B., Cattell, A.K.S., & Rhymer, R.M. (1947). P-technique demonstrated in determining psychophysical source traits in a normal individual. Psychometrika, 12, 267–288. · doi:10.1007/BF02288941
[7] Ekman, P. (1972). Universals and cultural differences in facial expressions of emotion. In J. Cole (Ed.), Nebraska symposium on motivation (pp. 207–282). Lincoln: University of Nebraska Press.
[8] Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6, 169–200. · doi:10.1080/02699939208411068
[9] Ekman, P., & Friesen, W.V. (1978). The facial action coding system. Palo Alto: Consulting Psychologists Press.
[10] Feldman-Barrett, L. (2006). Are emotions natural kinds? Perspectives in Psychological Science, 1, 28–58. · doi:10.1111/j.1745-6916.2006.00003.x
[11] Ferrer, E., & Nesselroade, J.R. (2003). Modeling affective processes in dyadic relations via dynamic factor analysis. Emotion, 3, 344–360. · doi:10.1037/1528-3542.3.4.344
[12] Gottman, J.M. (1990). Time-series analysis applied to physiological data. In J.T. Cacioppo & L.G. Tassinary (Eds.), Principles of psychophysiology: physical, social, and inferential elements (pp. 754–774). New York: Cambridge University Press.
[13] Gottman, J.M., & Levenson, R.W. (1985). A valid procedure for obtaining self-report of affect in marital interaction. Journal of Consulting and Clinical Psychology, 53, 151–160. · doi:10.1037/0022-006X.53.2.151
[14] Hamaker, E.L., Dolan, C.V., & Molenaar, P.C.M. (2005). Statistical modeling of the individual: rationale and application of multivariate stationary time series analysis. Multivariate Behavioral Research, 40, 207–233. · doi:10.1207/s15327906mbr4002_3
[15] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed.). New York: Springer. · Zbl 1273.62005
[16] Hsieh, F., & Turnbull, B.W. (1996). Non- and semi-parametric estimation of the receiver operating characteristics (ROC) curve. Annals of Statistics, 24, 25–40. · Zbl 0855.62029 · doi:10.1214/aos/1033066197
[17] Johnson, S.C. (1967). Hierarchical clustering schemes. Psychometrika, 32, 241–254. · Zbl 1367.62191 · doi:10.1007/BF02289588
[18] Klinkner, K.L., Shalizi, C.R., & Camperi, M.F. (2006). Measuring shared information and coordinated activity in neuronal networks. In Y. Weiss, B. Scholkopf, & J.C. Platt (Eds.), Advances in neural information processing systems (pp. 667–674). Cambridge: MIT Press.
[19] Lazarus, R.S. (1991). Emotion and adaptation. London: Oxford University Press.
[20] Levenson, R.W. (1994). Human emotions: a functional view. In P. Ekman & R.J. Davidson (Eds.), The nature of emotion: fundamental questions (pp. 123–126). New York: Oxford University Press.
[21] Levenson, R.W. (2003). Blood, sweat, and fears: the autonomic architecture of emotion. In P. Ekman, J.J. Campos, R.J. Davidson, & F.B.M. de Waal (Eds.), Emotions inside out (pp. 348–366). New York: The New York Academy of Sciences.
[22] Levenson, R.W., & Gottman, J.M. (1983). Marital interaction: physiological linkage and affective exchange. Journal of Personality and Social Psychology, 45, 587–597. · doi:10.1037/0022-3514.45.3.587
[23] Matsumoto, D., Nezlek, J.B., & Koopmann, B. (2007). Evidence for universality in phenomenological emotion response system coherence. Emotion, 7, 57–67. · doi:10.1037/1528-3542.7.1.57
[24] Mauss, I.B., Evers, C., Wilhelm, F.H., & Gross, J.J. (2006). How to bite your tongue without blowing your top: implicit evaluation of emotion regulation predicts affective responding to anger provocation. Personality and Social Psychology Bulletin, 32, 389–602. · doi:10.1177/0146167205283841
[25] Mauss, I.B., Levenson, R.W., McCarter, L., Wilhelm, F.H., & Gross, J.J. (2005). The tie that binds? Coherence among emotional experience, behavior, and autonomic physiology. Emotion, 5, 175–190. · doi:10.1037/1528-3542.5.2.175
[26] McAssey, M., Hsieh, F., & Ferrer, E. (2010). Optimal and robust design for efficient system-wide synchronization in networks of randomly-wired neuron-nodes. Statistics and Its Interface, 3, 159–168. · Zbl 1245.92003
[27] Milgram, S. (1967). The small world problem. Psychology Today, 2, 60–67.
[28] Molenaar, P.C.M. (2004). A manifesto on psychology as idiographic science: bringing the person back into scientific psychology–this time forever. Measurement, 2, 201–218.
[29] Nesselroade, J.R., & Molenaar, P.C.M. (1999). Pooling lagged covariance structures based on short, multivariate time-series for dynamic factor analysis. In R.H. Hoyle (Ed.), Statistical strategies for small sample research (pp. 224–251). Newbury Park: Sage.
[30] Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization: a universal concept in nonlinear sciences. Cambridge: Cambridge University Press. · Zbl 0993.37002
[31] Priestley, M.B. (1988). Nonlinear and non-stationary time series. New York: Academic Press. · Zbl 0667.62068
[32] Quian Quiroga, R., Kraskov, A., Kreuz, T., & Grassberger, P. (2002). Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Physical Review E, 65, 041903-14.
[33] Rohatgi, V.K. (1984). Statistical inference. Mineola: Dover Publications. · Zbl 0537.62001
[34] Rosenberg, E.L., & Ekman, P. (1994). Coherence between expressive and experiential systems in emotion. Cognition & Emotion, 8, 201–229. · doi:10.1080/02699939408408938
[35] Rottenberg, J., Ray, R.R., & Gross, J.J. (2007). Emotion elicitation using films. In J.A. Coan & J.J.B. Allen (Eds.), The handbook of emotion elicitation and assessment (pp. 9–28). New York: Oxford University Press.
[36] Scherer, K.R. (1984). On the nature and function of emotion: a component process approach. In K.R. Scherer & P. Ekman (Eds.), Approaches to emotion (pp. 293–317). Hillsdale: Erlbaum.
[37] Schneidman, E., Still, S., Berry, M.J., & Bialek, W. (2003). Network information and connected correlations. Physical Review Letters, 91, 238701-4. · doi:10.1103/PhysRevLett.91.238701
[38] Swets, J.A. (1996). Signal detection theory and ROC analysis in psychology and diagnostics: collected papers. Mahwah: Erlbaum. · Zbl 0913.92041
[39] Tomkins, S.S. (1962). Affect, imagery, consciousness: I. The positive affects. Oxford: Springer.
[40] Tsonis, P.A., & Tsonis, A.A. (2004). A ”small-world” network hypothesis for memory and dreams. Perspectives in Biology and Medicine, 47, 176–180. · Zbl 1070.81519 · doi:10.1353/pbm.2004.0036
[41] van der Maas, H.L.J., Dolan, C.V., Grasman, R.P.P., Wicherts, J.M., Huizenga, H.M., & Raijmakers, M.E.J. (2006). A dynamical model of general intelligence: the positive manifold of intelligence by mutualism. Psychological Review, 113, 842–861. · doi:10.1037/0033-295X.113.4.842
[42] Watts, D.J., & Strogatz, S.H. (1998). Collective dynamics of ’small-world’ networks. Nature, 393, 440–442. · Zbl 1368.05139 · doi:10.1038/30918
[43] Watts, D.J. (1999). Small worlds: the dynamics of networks between order and randomness. Princeton: Princeton University Press. · Zbl 1046.00006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.